scholarly journals Car Wash Wastewater Treatment Using an Advanced Oxidation Process: A Rapid Technique for the COD Reduction of Water Pollutant Sources

2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Reza Davarnejad ◽  
Kasra Sarvmeili ◽  
Meysam Sabzehei

In this paper, a car wash wastewater (CW) was treated by an economic and eco-friendly method called electro-Fenton (EF) technique. The experiments were conducted to investigate the effect of five important variables including reaction time, current density, pH, H2O2/Fe2+ molar ratio and H2O2/Car wash wastewater (mL/L) on the quality characteristics of wastewater such as COD, BOD5, TOC, TSS, heavy metals, EC, surfactants and hardness. By applying Box-Behnken design (BBD) and response surface methodology (RSM), the optimum operating conditions were obtained. The optimum conditions for COD [as a main factor in a wastewater (according to the environmental protocols)] removal of 68.72% were experimentally found at reaction time of 75.80 min, current density of 58.81 mA/cm2, pH of 3.02, volume ratio of H2O2/CW of 1.62 mL/L, H2O2/Fe2+ molar ratio of 3.66.

2015 ◽  
Vol 73 (1) ◽  
pp. 102-112 ◽  
Author(s):  
Ahmed H. Hilles ◽  
Salem S. Abu Amr ◽  
Rim A. Hussein ◽  
Anwar I. Arafa ◽  
Olfat D. El-Sebaie

The objective of this study was to investigate the performance of employing H2O2 reagent in persulfate activation to treat stabilized landfill leachate. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as persulfate and H2O2 dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following two responses proved to be significant with very low probabilities (<0.0001): chemical oxygen demand (COD) and NH3-N removal. The obtained optimum conditions included a reaction time of 116 min, 4.97 g S2O82−, 7.29 g H2O2 dosage and pH 11. The experimental results were corresponding well with predicted models (COD and NH3-N removal rates of 81% and 83%, respectively). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as persulfate only and H2O2 only, to evaluate its effectiveness. The combined method (i.e., /S2O82−/H2O2) achieved higher removal efficiencies for COD and NH3-N compared with other studied applications.


Author(s):  
Reza Davarnejad ◽  
Seyed Amir Mohajerani

Abstract The edible plant oil production factories consume high amounts of water and contaminate the water resources. This type of wastewater consists of high chemical oxygen demand (COD) which should properly be treated by an efficient technique. Furthermore, it is containing some chemicals obtained from several sources such as H3PO4 (from hydration section), NaOH (from neutralization section) and citric acid (from nickel removal section). The conventional techniques cannot efficiently treat it which is full of COD. Therefore, the electro-Fenton process as a rapid, compact and efficient one has been encouraged to be applied. For this purpose, 47 experiments were designed and carried out using iron electrodes to evaluate the effects of five significant independent variables such as reaction time (min), pH, current density (mA/cm2), volume ratio of H2O2/wastewater (ml/l) and H2O2/Fe2+ molar ratio on the COD removal. Response surface methodology (RSM) was employed to assess individual and interactive effects of the parameters. The optimum conditions were experimentally obtained at reaction time of 87.33 min, pH of 3.03, current density of 57 mA/cm2, H2O2/wastewater volume ratio of 2.13 ml/l and H2O2/Fe2+ molar ratio of 3.61 for COD removal of 62.94 %.


2002 ◽  
Vol 46 (9) ◽  
pp. 323-330 ◽  
Author(s):  
A.F. Aydin ◽  
M. Altinbas ◽  
M.F. Sevimli ◽  
I. Ozturk ◽  
H.Z. Sarikaya

The purpose of this study was to investigate an effective treatment system which can be applicable to treat opium alkaloid industry (OAI) effluents characterised with high COD, TKN, dark color and non-biodegradable organic pollutants. In the first phase of the study, lab-scale anaerobic (UASBR) + aerobic (SBR) treatability studies were carried out on opium processing industry effluents. Effluent CODs from the two staged biological treatment system were relatively high (∼700 mgl−1) and additional post treatment was required. Physico-chemical treatability studies previously carried out on the effluent of opium alkaloid wastewater treatment plant, were not effective in removing residual COD and color. In the second phase of the study, the refractory organics causing higher inert COD values in the SBR effluent were additionally treated by using Fenton's Oxidation. The batch tests were performed to determine the optimum operating conditions including pH, H2O2 dosage, molar ratio of Fe2+/H2O2 and reaction time. It was found that removal efficiencies of COD and color for 30 minutes reaction time were about 90% and 95%, respectively. The ratio of H2O2/FeSO4 was determined as 200 mgl−1/600 mgl−1 for the optimum oxidation and coagulation process at pH 4. Experimental results of the present study have clearly indicated that the Fenton's oxidation technology is capable to treat almost all parts of the organics which consist of both soluble initial and microbial inert fractions of COD for opium alkaloid industry effluents. Effluents from the Fenton's Oxidation process can satisfy effluent standards for COD and color in general.


2020 ◽  
Vol 26 (2) ◽  
pp. 200115-0
Author(s):  
Elif DURNA ◽  
Nevim GENÇ

In this study, the treatment of car wash wastewater was investigated by radical based hybrid/combined processes. Proposed processes, (Microwave (MW) + persulfate (PS) + Electrocoagulation (EC)), (ozone (O3) + PS + EC) and (MW + PS + O3), were optimized with Taguchi orthogonal array technique for maximum COD removal. The COD removal under optimum conditions was obtained to be 84%, 64.9% and 61.4%, for (MW + PS+ EC), (O3 + PS+ EC) and (MW + PS+ O3) processes, respectively. Operating costs for (MW + PS + EC), (O3 + PS + EC) and (MW + PS + O3) processes have been calculated as 0.2614, 0.1335 and 0.2653 €/L wastewater under optimum operating conditions. Pareto analysis showed that MW time and PS dose are very effective parameters but especially ozone related parameters have no significant effect on COD removal. Processes were evaluated with the PROMETHEE approach in terms of treatment efficiency, operating cost, sludge formation, and preferability criteria to determine the most suitable among the three alternative processes. As a result, the preference order of the processes for the treatment of car wash wastewater with radical based treatment processes was found as (MW + EC + PS) > (MW + O3 + PS) > (O3 + EC + PS).


2018 ◽  
Vol 65 ◽  
pp. 05012 ◽  
Author(s):  
Pradeep Kumar Singa ◽  
Mohamed Hasnain Isa ◽  
Yeek-Chia Ho ◽  
Jun-Wei Lim

This study was conducted to evaluate the COD removal efficiency of Photo-Fenton oxidation process. The reagents used in the Photo-Fenton process are catalyst Fe2+ and H2O2 as oxidizing agent. A 16W UV lamp was used to carry out the experiments. All the experiments were performed in batch mode to investigate the influence of operating conditions viz., Fenton reagents dosage, molar ratio and reaction time. The maximum COD removal observed was 68% under optimum operating conditions. The operating conditions H2O2/Fe2+ molar ratio = 3 and reaction time = 90 minutes were found to optimum. The dosages of Fenton reagents i.e. hydrogen peroxide and Fe2+ were optimum at 0.09 mol/L and 0.03 mol/L respectively.


2013 ◽  
Vol 779-780 ◽  
pp. 174-181
Author(s):  
Xiao Na Wang ◽  
Qin Yan Yue

The inverse microemulsion copolymerization of poly (dimethyl diallyl ammonium chloride-acrylamide) (PDMDAAC-AM) has been studied using a blend of two surfactants Span-80 and OP-10 as the composite emulsifier in kerosene-water media. The effects of various polymerization parameters (e.g., polymerization method, reaction time, addition of electrolyte, oil-soluble initiator concentration and aqueous-to-oil phase volume ratio (A/O)) on the conversion and copolymer characteristics have been investigated. The optimum operating conditions for preparing (PDMDAAC-AM) were determined as reaction time 1h, HCOONa concentration 0.05% (w), AIBN concentration 0.045% (w), A/O 2/3 and semi-continuous process. Stable latex with high conversion (97.42%) and 267cm3/g intrinsic viscosity was obtained. In the semi-continuous process, the size distribution peak narrows along with the reaction process and the average diameter of the final product is 15.2 nm, which is significantly less than that prepared by one-time process.


Author(s):  
Augustine Chioma Affam ◽  
Ezerie Henry Ezechi ◽  
Malay Chaudhuri

This chapter examined Fenton and sequencing batch reactor (SBR) treatment of pesticide industrial wastewater. The optimum operating conditions for Fenton pretreatment of the pesticide wastewater were H2O2/COD molar ratio 3.0, H2O2/Fe2+ molar ratio 10, pH 3 and reaction time 60 min. The COD and TOC removal were 58.51 and 39.76%, respectively and biodegradability (BOD5/COD ratio) increased from 0.02 to ~ 0.30 after 60 min reaction time. The reaction followed pseudo-first order kinetics with a rate constant (k) of 0.0083 min−1. In the post-treatment by aerobic SBR, five different Fenton operating conditions were investigated and H2O2/COD molar ratio 3.0, H2O2/Fe2+ molar ratio 25, pH 3 and reaction time 60 min appeared to be the most significant (p < 0.05) operating conditions. The Fenton–SBR treatment at 12 hr HRT achieved COD, TOC and BOD5 removal efficiency of 96.7, 97.7 and 93.3%, respectively. The Fenton-SBR process was effective for the treatment of pesticide wastewater.


2021 ◽  
Vol 15 (4) ◽  
pp. 583-590
Author(s):  
Luqman Buchori ◽  
◽  
Didi Dwi Anggoro ◽  
Anwar Ma’ruf ◽  
◽  
...  

The synthesis of biodiesel from the used cooking oil with CaO catalyst from waste animal bones has been investigated. The content of free fatty acids (FFA) in the used cooking oil was reduced by adsorption using activated charcoal from a salak peel. Biodiesel synthesis was carried out via transesterification using CaO catalyst. The CaO catalyst was obtained from waste animal bones calcined in the Ney Vulcan furnace. The effect of calcination temperature was studied in the range of 873‒1273 K. The effect of catalyst loading was investigated by varying within the range of 1‒9 wt %. The methanol to oil molar ratio was investigated in the range from 6:1 to 18:1. The effect of the transesterification reaction time was studied with a time variation of 1‒5 h. The optimum operating conditions were determined. Under these conditions, the yield of biodiesel produced was 97.56 % with an ester content of 96.06 %. It was shown that the physicochemical properties of biodiesel produced meet the standards.


2020 ◽  
Vol 10 (10) ◽  
pp. 3566
Author(s):  
Mary Angélica Ferreira Vela ◽  
Juan C. Acevedo-Páez ◽  
Nestor Urbina-Suárez ◽  
Yeily Adriana Rangel Basto ◽  
Ángel Darío González-Delgado

The search for innovation and biotechnological strategies in the biodiesel production chain have become a topic of interest for scientific community owing the importance of renewable energy sources. This work aimed to implement an enzymatic transesterification process to obtain biodiesel from waste frying oil (WFO). The transesterification was performed by varying reaction times (8 h, 12 h and 16 h), enzyme concentrations of lipase XX 25 split (14%, 16% and 18%), pH of reaction media (6, 7 and 8) and reaction temperature (35, 38 and 40 °C) with a fixed alcohol–oil molar ratio of 3:1. The optimum operating conditions were selected to quantify the amount of fatty acid methyl esters (FAMEs) generated. The highest biodiesel production was reached with an enzyme concentration of 14%, reaction time of 8 h, pH of 7 and temperature of 38 °C. It was estimated a FAMEs production of 42.86% for the selected experiment; however, best physicochemical characteristics of biodiesel were achieved with an enzyme concentration of 16% and reaction time of 8 h. Results suggested that enzymatic transesterification process was favorable because the amount of methyl esters obtained was similar to the content of fatty acids in the WFO.


Author(s):  
Vijay A. Juwar ◽  
Ajit P. Rathod

Abstract The present study deals with the treatment of complex waste (WW) treated for removal of chemical oxygen demand (COD) of the food industry by a sono-Fenton process using a batch reactor. The response surface methodology (RSM) was employed to investigate the five independent variables, such as reaction time, the molar ratio of H2O2/Fe2+, volume ratio of H2O2/WW, pH of waste, and ultrasonic density on COD removal. The experimental data was optimized. The optimization yields the conditions: Reaction time of 24 min, HP:Fe molar ratio of 2.8, HP:WW volume ratio of 1.9 ml/L, pH of 3.6 and an ultrasonic density of 1.8 W/L. The predicted value of COD was 91% and the experimental result was 90%. The composite desirability value (D) of the predicted percent of COD removal at the optimized level of variables was close to one (D = 0.991).


Sign in / Sign up

Export Citation Format

Share Document