scholarly journals Synthesis of Coumarins Linked With 1,2,3-Triazoles under Microwave Irradiation and Evaluation of their Antimicrobial and Antioxidant Activity

2019 ◽  
Vol 64 (1) ◽  
Author(s):  
Nibin Joy Muthipeedika ◽  
Yadav D Bodke ◽  
Sandeep Telkar ◽  
Vasily A Bakulev

A series of coumarin derivatives linked with 1,2,3-triazoles has been synthesized by utilizing the copper catalyzed azide-alkyne cycloaddition reaction and were screened for their antimicrobial and antioxidant properties. Some of the compounds displayed promising antibacterial activities (MIC ranging from 5-150 µg/mL) and moderate antifungal activities as compared to the respective standards. The compounds 4k and 4g displayed good antibacterial activity when compared with the standard, Ciprofloxacin, and 4n exhibited better antifungal activity when compared to other synthesized compounds. The in silico docking studies of the active compounds were carried out against the gyrase enzyme and from those studies, it was acknowledged that 4k possessed significant hydrogen bonding and hydrophobic interactions which could be the plausible reason for its superior activity as compared to the other synthesized compounds. The compounds 4h and 4q showed promising antioxidant activity when compared with the standard, BHT, which could be attributed to the presence of electron donating substituents.                                                Resumen. Una serie de derivados de cumarina enlazados con 1,2,3-triazoles fue sintetizada empleando la reacción de cicloadición azida-alquino catalizada con cobre y fue evaluada en sus propiedades antimicrobianas y antioxidantes. Algunos de los compuestos exhibieron actividad antimicrobiana promisoria (intervalo MIC de 5-150 µg/mL) y actividad antifúngica moderada con respecto a los estándares respectivos. Los compuestos 4g y 4k mostraron buena actividad antibacterial con relación al estándar. Fluconazole y 4n exhibieron mejor actividad antifúngica en comparación con el resto de los compuestos. Se llevaron a cabo estudios in silico de modelado molecular e interacción de los compuestos activos con la enzima girasa ADN. De estos estudios se observó que 4k posee enlaces puentes de hidrógeno e interacciones hidrofóbicas significativos, los cuales podrían ser una causa plausible de su actividad mayor a aquélla mostrada por los otros compuestos sintetizados. Los compuestos 4h y 4q mostraron una importante actividad antioxidante comparada con el estándar (BHT), lo cual podría atribuirse a la presencia de sustituyentes electro-donadores

2015 ◽  
Vol 51 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Muhammad Yar ◽  
Muhammad Arshad ◽  
Ariba Farooq ◽  
Mazhar Amjad Gilani ◽  
Khurshid Ayub ◽  
...  

Alzheimer's disease (AD) is a fast growing neurodegenerative disorder of the central nervous system and anti-oxidants can be used to help suppress the oxidative stress caused by the free radicals that are responsible for AD. A series of selected synthetic indole derivatives were biologically evaluated to identify potent new antioxidants. Most of the evaluated compounds showed significant to modest antioxidant properties (IC50 value 399.07 140.0±50 µM). Density Functional Theory (DFT) studies were carried out on the compounds and their corresponding free radicals. Differences in the energy of the parent compounds and their corresponding free radicals provided a good justification for the trend found in their IC50 values. In silico, docking of compounds into the proteins acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), which are well known for contributing in AD disease, was also performed to predict anti-AD potential.


2019 ◽  
Vol 49 (17) ◽  
pp. 2219-2234
Author(s):  
Srinu Bodige ◽  
Parameshwar Ravula ◽  
Kali Charan Gulipalli ◽  
Srinivas Endoori ◽  
Purna Koteswara Rao Cherukumalli ◽  
...  

2020 ◽  
Vol 90 (7) ◽  
pp. 1322-1330
Author(s):  
S. Bodige ◽  
P. Ravula ◽  
K. Ch. Gulipalli ◽  
S. Endoori ◽  
P. Koteswara Rao Cherukumalli ◽  
...  

2019 ◽  
Vol 4 (5) ◽  
pp. 1627-1634 ◽  
Author(s):  
Triloknadh Settypalli ◽  
Venkata Rao Chunduri ◽  
Nagaraju Kerru ◽  
Hari Krishna Nallapaneni ◽  
Venkata Ramaiah Chintha ◽  
...  

2019 ◽  
Vol 15 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Paritosh Shukla ◽  
Ashok Sharma ◽  
Leena Fageria ◽  
Rajdeep Chowdhury

Background: Cancer being a deadly disease, many reports of new chemical entities are available. Pyranopyrazole (PPZ) compounds have also been disclosed as bioactive molecules but mainly as antimicrobial agents. Based on one previous report and our interest in anticancer drug design, we decided to explore PPZs as anticancer agents. To the best of our knowledge, we found that a comprehensive study, involving synthesis, in-vitro biological activity determination, exploration of the mechanism of inhibition and finally in-silico docking studies, was missing in earlier reports. This is what the present study intends to accomplish. Methods: Ten spiro and eleven non-spiro PPZ molecules were synthesized by environment-friendly multicomponent reaction (MCR) strategy. After subjecting each of the newly synthesized molecules to Hep3b hepatocellular carcinoma cell lines assay, we selectively measured the Optical Density (OD) of the most active ones. Then, the compound exhibiting the best activity was docked against human CHK- 1 protein to get an insight into the binding affinities and a quick structure activity relationship (SAR) of the PPZs. Results: The two series of spiro and non-spiro PPZs were easily synthesized in high yields using microwave assisted synthesis and other methods. Among the synthesized compounds, most compounds showed moderate to good anticancer activity against the MTT assay. After performing the absorbance studies we found that the non-spiro molecules showed better apoptosis results and appeared to bind to DNA causing disruption in their structures. Finally, the docking results of compound 5h (having N,Ndimethylamino substituted moiety) clearly showed good binding affinities as predicted by our experimental findings. Conclusion: The paper describes a comprehensive synthesis, in-vitro and docking studies done on new PPZs. The newly synthesized series of spiro and non-spiro PPZs were found to possess antineoplasmic activity as evinced by the studies on hep3b cells. Also, the UV visible absorbance study gave clues to the possible binding of these molecules to the DNA. Docking studies corroborated well with the experimental results. Thus, these new molecules appear to be potential anticancer agents, but further studies are required to substantiate and elaborate on these findings.


2019 ◽  
Vol 15 (4) ◽  
pp. 318-333
Author(s):  
Dipak P. Mali ◽  
Neela M. Bhatia

Objective:To screen the phytochemicals for phosphodiesterase 5A (PDE5A) inhibitory potential and identify lead scaffolds of antihypertensive phytochemicals using in silico docking studies.Methods:In this perspective, reported 269 antihypertensive phytochemicals were selected. Sildenafil, a PDE5A inhibitor was used as the standard. In silico docking study was carried out to screen and identify the inhibiting potential of the selected phytochemicals against PDE5A enzyme using vLife MDS 4.4 software.Results:Based on docking score, π-stacking, H-bond and ionic interactions, 237 out of 269 molecules were selected which have shown one or more interactions. Protein residue Gln817A was involved in H-boding whereas Val782A, Phe820A and Leu804A were involved in π-stacking interaction with ligand. The selected 237 phytochemicals were structurally diverse, therefore 82 out of 237 molecules with one or more tricycles were filtered out for further analysis. Amongst tricyclic molecules, 14 molecules containing nitrogen heteroatom were selected for lead scaffold identification which finally resulted in three different basic chemical backbones like pyridoindole, tetrahydro-pyridonaphthyridine and dihydro-pyridoquinazoline as lead scaffolds.Conclusion:In silico docking studies revealed that nitrogen-containing tetrahydro-pyridonaphthyridine and dihydro-pyridoquinazoline tricyclic lead scaffolds have emerged as novel PDE5A inhibitors for antihypertensive activity. The identified lead scaffolds may provide antihypertensive lead molecules after its optimization.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1081
Author(s):  
Matilda Rădulescu ◽  
Călin Jianu ◽  
Alexandra Teodora Lukinich-Gruia ◽  
Marius Mioc ◽  
Alexandra Mioc ◽  
...  

The investigation aimed to study the in vitro and in silico antioxidant properties of Melissa officinalis subsp. officinalis essential oil (MOEO). The chemical composition of MOEO was determined using GC–MS analysis. Among 36 compounds identified in MOEO, the main were beta-cubebene (27.66%), beta-caryophyllene (27.41%), alpha-cadinene (4.72%), caryophyllene oxide (4.09%), and alpha-cadinol (4.07%), respectively. In vitro antioxidant properties of MOEO have been studied in 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging, and inhibition of β-carotene bleaching assays. The half-maximal inhibitory concentration (IC50) for the radical scavenging abilities of ABTS and DPPH were 1.225 ± 0.011 μg/mL and 14.015 ± 0.027 μg/mL, respectively, demonstrating good antioxidant activity. Moreover, MOEO exhibited a strong inhibitory effect (94.031 ± 0.082%) in the β-carotene bleaching assay by neutralizing hydroperoxides, responsible for the oxidation of highly unsaturated β-carotene. Furthermore, molecular docking showed that the MOEO components could exert an in vitro antioxidant activity through xanthine oxidoreductase inhibition. The most active structures are minor MOEO components (approximately 6%), among which the highest affinity for the target protein belongs to carvacrol.


2021 ◽  
Vol 183 ◽  
pp. 112598
Author(s):  
Duaa Eliwa ◽  
Mohamed A. Albadry ◽  
Abdel-Rahim S. Ibrahim ◽  
Amal Kabbash ◽  
Kumudini Meepagala ◽  
...  

2012 ◽  
Vol 12 (2) ◽  
pp. 157-161 ◽  
Author(s):  
Arumugam Madeswaran ◽  
Muthuswamy Umamaheswari ◽  
Kuppusamy Asokkumar ◽  
Thirumalaisamy Sivashanmugam ◽  
Varadharajan Subhadradevi ◽  
...  

Author(s):  
Quan Shi ◽  
Qi He ◽  
Weiming Chen ◽  
Jianwen Long ◽  
Bo Zhang

IntroductionOleuropein (OLP) is polyphenol obtained from olive oil; it is proved in Chinese traditional medicine for its use in disorders including autoimmune and inflammatory disorders. Psoriasis (PSR) is an autoimmune and inflammatory disorder triggered by T-helper-17 (Th17) cells.Material and methodsWe developed an imiquimod (IMQ)-mediated PSR model in mice to study the anti-inflammatory role of OLP in psoriasis. The mice were given 50 mg/kg and 100 mg/kg dose of OLP. Histology was done to assess the inflammation of lesions. Western blot analysis was done for JAK3/STAT3 in isolated T cells, expression of RORgt was done by RT-PCR. The In silico molecular docking studies were done for interaction of OLP with target protein STAT3 and JAK3.ResultsTreatment of OLP attenuated proliferation in IMQ-mediated keratinocytes, improved infiltration of CD3+ cells in the skin lesions and in CD4+ and CD8+ T cells and also ameliorated the levels of cytokines. In in vitro studies in isolated T cells, OLP blocked the differentiation of Th17 cells and also the levels of IL-17 and the JAK3/STAT3 pathway. The in silico docking showed that OLP had potential binding affinity with JAK3 and STAT3 which was parallel to in vivo and in vitro findings.ConclusionsOLP ameliorates psoriasis skin lesions by blocking Th17-mediated inflammation. OLP may be an interesting molecule for treating autoimmunity in psoriasis.


Sign in / Sign up

Export Citation Format

Share Document