An iminostilbene functionalized benzimidazole derivative for improved solution n-doping of P(NDI20D-T2)

Author(s):  
Pietro Rossi ◽  
Giulia Coco ◽  
Francesca Pallini ◽  
Marco Cassinelli ◽  
Christopher McNeill ◽  
...  
2019 ◽  
Vol 26 (18) ◽  
pp. 3260-3278 ◽  
Author(s):  
Hayrettin Ozan Gulcan ◽  
Açelya Mavideniz ◽  
Mustafa Fethi Sahin ◽  
Ilkay Erdogan Orhan

Benzimidazole scaffold has been efficiently used for the design of various pharmacologically active molecules. Indeed, there are various benzimidazole drugs, available today, employed for the treatment of different diseases. Although there is no benzimidazole moiety containing a drug used in clinic today for the treatment of Alzheimer’s Disease (AD), there have been many benzimidazole derivative compounds designed and synthesized to act on some of the validated and non-validated targets of AD. This paper aims to review the literature to describe these benzimidazole containing molecules designed to target some of the biochemical cascades shown to be involved in the development of AD.


2019 ◽  
Vol 19 (8) ◽  
pp. 624-646 ◽  
Author(s):  
Yogita Bansal ◽  
Manjinder Kaur ◽  
Gulshan Bansal

Structural resemblance of benzimidazole nucleus with purine nucleus in nucleotides makes benzimidazole derivatives attractive ligands to interact with biopolymers of a living system. The most prominent benzimidazole compound in nature is N-ribosyldimethylbenzimidazole, which serves as an axial ligand for cobalt in vitamin B12. This structural similarity prompted medicinal chemists across the globe to synthesize a variety of benzimidazole derivatives and to screen those for various biological activities, such as anticancer, hormone antagonist, antiviral, anti-HIV, anthelmintic, antiprotozoal, antimicrobial, antihypertensive, anti-inflammatory, analgesic, anxiolytic, antiallergic, coagulant, anticoagulant, antioxidant and antidiabetic activities. Hence, benzimidazole nucleus is considered as a privileged structure in drug discovery, and it is exploited by many research groups to develop numerous compounds that are purported to be antimicrobial. Despite a large volume of research in this area, no novel benzimidazole derived compound has emerged as clinically effective antimicrobial drug. In the present review, we have compiled various reports on benzimidazole derived antimicrobials, classified as monosubstituted, disubstituted, trisubstituted and tetrasubstituted benzimidazoles, bisbenzimidazoles, fused-benzimidazoles, and benzimidazole derivative-metal complexes. The purpose is to collate these research reports, and to generate a generalised outlay of benzimidazole derived molecules that can assist the medicinal chemists in selecting appropriate combination of substituents around the nucleus for designing potent antimicrobials.


2019 ◽  
Vol 16 (9) ◽  
pp. 740-749
Author(s):  
Sushil R. Mathapati ◽  
Arvind H. Jadhav ◽  
Mantosh B. Swami ◽  
Jairaj K. Dawle

Zinc sulfamate (Zn(NH2SO3)2 is a derivative of sulfamic acid (H3NSO3) which possesses “Lewis acidity” and finds well suited in a number of catalytic applications. The present paper describes an efficient, eco-friendly, and clean synthesis of 2-substituted benzimidazole derivatives by reacting diverse o-phenylenediamine with various substituted aromatic aldehydes using a catalytic amount of zinc sulfamate in ethanol at ambient temperature. As a result, 10 mol.% of Zinc sulfamate catalyst showed 92% of respective product yield with 100% conversion using short reaction period in ethanol. Meanwhile, effect of reaction parameters, such as amount of catalyst, different solvents, and reaction temperature on reaction product, was also studied. In addition, in the optimized reaction condition various substituted biological important benzimidazoles derivatives were prepared by using optimized reaction condition in good to efficient yield. In addition, possible reaction mechanism in the presence of zinc sulfamate for the preparation of benzimidazole derivative was sketched and discussed. The present green approach showed significances with faster reaction rate with inexpensive catalyst, which showed excellent and clean yield of benzimidazole in mild reaction condition with easy work-up procedure.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 507
Author(s):  
Luca Seravalli ◽  
Claudio Ferrari ◽  
Matteo Bosi

In this paper, we model the electrical properties of germanium nanowires with a particular focus on physical mechanisms of electrical molecular sensing. We use the Tibercad software to solve the drift-diffusion equations in 3D and we validate the model against experimental data, considering a p-doped nanowire with surface traps. We simulate three different types of interactions: (1) Passivation of surface traps; (2) Additional surface charges; (3) Charge transfer from molecules to nanowires. By analyzing simulated I–V characteristics, we observe that: (i) the largest change in current occurs with negative charges on the surfaces; (ii) charge transfer provides relevant current changes only for very high values of additional doping; (iii) for certain values of additional n-doping ambipolar currents could be obtained. The results of these simulations highlight the complexity of the molecular sensing mechanism in nanowires, that depends not only on the NW parameters but also on the properties of the molecules. We expect that these findings will be valuable to extend the knowledge of molecular sensing by germanium nanowires, a fundamental step to develop novel sensors based on these nanostructures.


Author(s):  
Long Yao ◽  
Shunlong Ju ◽  
Xuebin Yu

Rechargeable aluminum batteries (RABs) based on multivalent ions transfer have attracted great attention due to their large specific capacities, natural abundance, and high safety of metallic Al anode. However, the...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuze Lin ◽  
Yuchuan Shao ◽  
Jun Dai ◽  
Tao Li ◽  
Ye Liu ◽  
...  

AbstractIntentional doping is the core of semiconductor technologies to tune electrical and optical properties of semiconductors for electronic devices, however, it has shown to be a grand challenge for halide perovskites. Here, we show that some metal ions, such as silver, strontium, cerium ions, which exist in the precursors of halide perovskites as impurities, can n-dope the surface of perovskites from being intrinsic to metallic. The low solubility of these ions in halide perovskite crystals excludes the metal impurities to perovskite surfaces, leaving the interior of perovskite crystals intrinsic. Computation shows these metal ions introduce many electronic states close to the conduction band minimum of perovskites and induce n-doping, which is in striking contrast to passivating ions such as potassium and rubidium ion. The discovery of metallic surface doping of perovskites enables new device and material designs that combine the intrinsic interior and heavily doped surface of perovskites.


2021 ◽  
pp. 109530
Author(s):  
Hoda A. Elkot ◽  
Ibrahim Ragab ◽  
Noha M. Saleh ◽  
Mohamed N. Amin ◽  
Sara T. Al-Rashood ◽  
...  

2012 ◽  
Vol 717-720 ◽  
pp. 415-418
Author(s):  
Yoshitaka Umeno ◽  
Kuniaki Yagi ◽  
Hiroyuki Nagasawa

We carry out ab initio density functional theory calculations to investigate the fundamental mechanical properties of stacking faults in 3C-SiC, including the effect of stress and doping atoms (substitution of C by N or Si). Stress induced by stacking fault (SF) formation is quantitatively evaluated. Extrinsic SFs containing double and triple SiC layers are found to be slightly more stable than the single-layer extrinsic SF, supporting experimental observation. Effect of tensile or compressive stress on SF energies is found to be marginal. Neglecting the effect of local strain induced by doping, N doping around an SF obviously increase the SF formation energy, while SFs seem to be easily formed in Si-rich SiC.


Author(s):  
Ruirui Yun ◽  
Beibei Zhang ◽  
Chuang Qiu ◽  
Ziwei Ma ◽  
Feiyang Zhan ◽  
...  
Keyword(s):  
N Doping ◽  

Sign in / Sign up

Export Citation Format

Share Document