scholarly journals Trial Operation of Water-quality Forecasting System Based on Fecal Pollution Indicators for a Beach in Odaiba Marine Park

2021 ◽  
Vol 44 (3) ◽  
pp. 59-68
Author(s):  
Chizuru KITAYAMA ◽  
Kenji MORITA ◽  
Hiroshi FUKUCHI ◽  
SungAe LEE ◽  
Hiroaki FURUMAI
Author(s):  
R. Quinn Thomas ◽  
Renato J. Figueiredo ◽  
Vahid Daneshmand ◽  
Bethany J. Bookout ◽  
Laura K. Puckett ◽  
...  

AbstractFreshwater ecosystems are experiencing greater variability due to human activities, necessitating new tools to anticipate future water quality. In response, we developed and deployed a real-time iterative water temperature forecasting system (FLARE – Forecasting Lake And Reservoir Ecosystems). FLARE is composed of: water quality and meteorology sensors that wirelessly stream data, a data assimilation algorithm that uses sensor observations to update predictions from a hydrodynamic model and calibrate model parameters, and an ensemble-based forecasting algorithm to generate forecasts that include uncertainty. Importantly, FLARE quantifies the contribution of different sources of uncertainty (driver data, initial conditions, model process, and parameters) to each daily forecast of water temperature at multiple depths. We applied FLARE to Falling Creek Reservoir (Vinton, Virginia, USA), a drinking water supply, during a 475-day period encompassing stratified and mixed thermal conditions. Aggregated across this period, root mean squared error (RMSE) of daily forecasted water temperatures was 1.13 C at the reservoir’s near-surface (1.0 m) for 7-day ahead forecasts and 1.62C for 16-day ahead forecasts. The RMSE of forecasted water temperatures at the near-sediments (8.0 m) was 0.87C for 7-day forecasts and 1.20C for 16-day forecasts. FLARE successfully predicted the onset of fall turnover 4-14 days in advance in two sequential years. Uncertainty partitioning identified meteorology driver data as the dominant source of uncertainty in forecasts for most depths and thermal conditions, except for the near-sediments in summer, when model process uncertainty dominated. Overall, FLARE provides an open-source system for lake and reservoir water quality forecasting to improve real-time management.Key PointsWe created a real-time iterative lake water temperature forecasting system that uses sensors, data assimilation, and hydrodynamic modelingOur water quality forecasting system quantifies uncertainty in each daily forecast and is open-source16-day future forecasted temperatures were within 1.4°C of observations over 16 months in a reservoir case study


2018 ◽  
Vol 69 (8) ◽  
pp. 2045-2049
Author(s):  
Catalina Gabriela Gheorghe ◽  
Andreea Bondarev ◽  
Ion Onutu

Monitoring of environmental factors allows the achievement of some important objectives regarding water quality, forecasting, warning and intervention. The aim of this paper is to investigate water quality parameters in some potential pollutant sources from northern, southern and east-southern areas of Romania. Surface water quality data for some selected chemical parameters were collected and analyzed at different points from March to May 2017.


1989 ◽  
Vol 21 (2) ◽  
pp. 31-38 ◽  
Author(s):  
Simon Woodley

The Great Barrier Reef is the largest coral reef system in the world. It is recognised and appreciated worldwide as a unique environment and for this reason has been inscribed on the World Heritage List. The Reef is economically-important to Queensland and Australia, supporting substantial tourism and fishing industries. Management of the Great Barrier Reef to ensure conservation of its natural qualities in perpetuity is achieved through the establishment of the Great Barrier Reef Marine Park. The maintenance of water quality to protect the reef and the industries which depend on it is becoming an increasingly important management issue requiring better knowledge and possibly new standards of treatment and discharge.


2000 ◽  
Vol 42 (1-2) ◽  
pp. 75-79 ◽  
Author(s):  
C. Campos ◽  
G. Oron ◽  
M. Salgot ◽  
L. Gillerman

A critical objective for any wastewater reuse programme is to minimise health and environmental hazard. When applying wastewater to soil–plant systems, it is to be noted that the passage of water through the soil considerably reduces the number of microorganisms carried by the reclaimed wastewater. Factors that affect survival include number and type of microorganisms, soil organic matter content, temperature, moisture, pH, rainfall, sunlight, protection provided by foliage and antagonism by soil microflora. The purpose of this work was to examine the behaviour of fecal pollution indicators in a soil irrigated with treated wastewater under onsurface and subsurface drip irrigation. The experiment was conducted in a vineyard located at a commercial farm near the City of Arad (Israel). Wastewater and soil samples were monitored during the irrigation period and examined for fecal coliforms, somatic and F+ coliphages and helminth eggs. Physico-chemical parameters were controlled in order to determine their relationship with removal of microorganisms. The results showed high reduction of the concentration of microorganisms when wastewater moves through the soil; and a good correlation between the reduction of fecal pollution indicators and moisture content, organic matter concentration and pH. The application of secondary treated domestic wastewater in this specific soil and under these irrigation systems affect the survival of microorganisms, thus reducing the health and environmental risk.


Sign in / Sign up

Export Citation Format

Share Document