scholarly journals Anaerobic wastewater treatment with fixed-bed reactors.

1987 ◽  
Vol 10 (11) ◽  
pp. 657-660
Author(s):  
Masao Kuroda
1996 ◽  
Vol 14 (3) ◽  
pp. 145-150 ◽  
Author(s):  
E. S�nchez ◽  
R. Borja ◽  
L. Travieso

Author(s):  
Elisangela Watthier ◽  
Cristiane L. Andreani ◽  
Douglas G. B. Torres ◽  
Osvaldo Kuczman ◽  
Maria H. F. Tavares ◽  
...  

2011 ◽  
Vol 356-360 ◽  
pp. 1942-1946 ◽  
Author(s):  
Wu Feng Jiang ◽  
Su Ju Hao ◽  
Yun Han Ling

Coking wastewater produced in the coking process is poisonous and difficult to be degraded. Coking wastewater was treated by fixed bed reactors of metallization pellets with high carbon (MPHC). In this paper, it studies the effect of removing phenols, cyanide, chemical oxygen demand(COD)and ammonia nitrogen in coking wastewater by MPHC. The results show that MPHC has good degradation effect on phenols and cyanide in coking wastewater, and the degradation rate reaches to 99.88% and 99.81% respectively; and has certain degradation effect on COD, the degradation rate is 70.61%; has poor degradation effect on ammonia nitrogen. The results of FT-IR indicate that the degradation of organic pollutants in coking wastewater by MPHC is not simply adsorption, but is removed completely.


1990 ◽  
Vol 22 (1-2) ◽  
pp. 347-352 ◽  
Author(s):  
C. Paffoni ◽  
B. Védry ◽  
M. Gousailles

The Paris Metropolitan area, which contains over eight million inhabitants, has a daily output of about 3 M cu.meters of wastewater, the purification of which is achieved by SIAAP (Paris Metropolitan Area Sewage Service) in both Achères and Valenton plants. The carbon pollution is eliminated from over 2 M cu.m/day at Achères. In order to improve the quality of output water, its tertiary nitrification in fixed-bed reactors has been contemplated. The BIOFOR (Degremont) and BIOCARBONE (OTV) processes could be tested in semi-industrial pilot reactors at the CRITER research center of SIAAP. At a reference temperature of 13°C, the removed load is approximately 0.5 kg N NH4/m3.day. From a practical point of view, it may be asserted that in such operating conditions as should be at the Achères plant, one cubic meter of filter can handle the tertiary nitification of one cubic meter of purified water per hour at an effluent temperature of 13°C.


1995 ◽  
Vol 31 (9) ◽  
pp. 137-144 ◽  
Author(s):  
T. Miyahara ◽  
M. Takano ◽  
T. Noike

The relationship between the filter media and the behaviour of anaerobic bacteria was studied using anaerobic fixed-bed reactors. At an HRT of 48 hours, the number of suspended acidogenic bacteria was higher than those attached to the filter media. On the other hand, the number of attached methanogenic bacteria was more than ten times as higher than that of suspended ones. The numbers of suspended and deposited acidogenic and methanogenic bacteria in the reactor operated at an HRT of 3 hours were almost the same as those in the reactor operated at an HRT of 48 hours. Accumulation of attached bacteria was promoted by decreasing the HRT of the reactor. The number of acidogenic bacteria in the reactor packed sparsely with the filter media was higher than that in the closely packed reactor. The number of methanogenic bacteria in the sparsely packed reactor was lower than that in the closely packed reactor.


1999 ◽  
Vol 39 (4) ◽  
pp. 85-92 ◽  
Author(s):  
J. Behrendt

A mathematical model for nitrification in an aerated fixed bed reactor has been developed. This model is based on material balances in the bulk liquid, gas phase and in the biofilm area. The fixed bed is divided into a number of cells according to the reduced remixing behaviour. A fixed bed cell consists of 4 compartments: the support, the gas phase, the bulk liquid phase and the stagnant volume containing the biofilm. In the stagnant volume the biological transmutation of the ammonia is located. The transport phenomena are modelled with mass transfer formulations so that the balances could be formulated as an initial value problem. The results of the simulation and experiments are compared.


2020 ◽  
Vol 5 ◽  
pp. 100057 ◽  
Author(s):  
E.M. Moghaddam ◽  
E.A. Foumeny ◽  
A.I. Stankiewicz ◽  
J.T. Padding

Sign in / Sign up

Export Citation Format

Share Document