Danger in the Rocks? Thinking through Land Use and Naturally-Occurring Asbestos with Structural Ethics

2021 ◽  
Vol 26 (1) ◽  
pp. 85
Author(s):  
Effing
2012 ◽  
Vol 22 (5) ◽  
pp. 516-521 ◽  
Author(s):  
Binggan Wei ◽  
Xianjie Jia ◽  
Bixiong Ye ◽  
Jiangping Yu ◽  
Biao Zhang ◽  
...  

Author(s):  
Jiwoon Kwon

This review examined the main issues debated in Korea regarding the production and use of materials containing naturally occurring asbestos (NOA) as impurities, and investigated the impacts of these debates on the asbestos ban, as well as the future implications. In Korea, incidents associated with the production and use of NOA-contaminated talc powders, construction rocks, serpentinites, and dolomite rocks raised public concern and led to accelerating the ban on asbestos. The main controversies concern policies on appropriate asbestos content limits, whether materials containing a trace amount of NOA should be banned, and the control of materials with high human exposure risk. To address recurring controversies, the implementation of preventive measures to manage elongated mineral particles and the use of transmission electron microscopy for more sensitive analysis need to be discussed, along with reaching social agreement on the controversial policies. To minimize the potential exposure to asbestos that may occur during the production and use of industrial minerals in the future, it is necessary to apply occupational exposure control measures and monitor the health effects of the relevant population groups. These national policies on NOA should be prepared based on close collaboration and discussion with policymakers, industry stakeholders, and related academic experts.


2020 ◽  
Vol 26 (1) ◽  
pp. 9-14
Author(s):  
R. Mark Bailey

ABSTRACT Naturally occurring asbestos (NOA) is being discovered in a widening array of geologic environments. The complex geology of the state of California is an excellent example of the variety of geologic environments and rock types that contain NOA. Notably, the majority of California rocks were emplaced during a continental collision of eastward-subducting oceanic and island arc terranes (Pacific and Farallon plates) with the westward continental margin of the North American plate between 65 and 150 MY BP. This collision and accompanying accretion of oceanic and island arc material from the Pacific plate onto the North American plate, as well as the thermal events caused by emplacement of the large volcanic belt that became today's Sierra Nevada mountain range, are the principal processes that produced the rocks where the majority of NOA-bearing units have been identified.


2019 ◽  
Vol 78 (17) ◽  
Author(s):  
Didier Lahondère ◽  
Florence Cagnard ◽  
Guillaume Wille ◽  
Jéromine Duron

Author(s):  
Lescano Leticia ◽  
Locati Francisco ◽  
Marfil Silvina ◽  
Sfragulla Jorge ◽  
Bonalumi Aldo ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Arbindra Timilsina ◽  
Wenxu Dong ◽  
Jiafa Luo ◽  
Stuart Lindsey ◽  
Yuying Wang ◽  
...  

AbstractThe conversion of natural grassland to semi-natural or artificial ecosystems is a large-scale land-use change (LUC) commonly occurring to saline–alkaline land. Conversion of natural to artificial ecosystems, with addition of anthropogenic nitrogen (N) fertilizer, influences N availability in the soil that may result in higher N2O emission along with depletion of 15N, while converting from natural to semi-natural the influence may be small. So, this study assesses the impact of LUC on N2O emission and 15N in N2O emitted from naturally occurring saline–alkaline soil when changing from natural grassland (Phragmites australis) to semi-natural [Tamarix chinensis (Tamarix)] and to cropland (Gossypium spp.). The grassland and Tamarix ecosystems were not subject to any management practice, while the cropland received fertilizer and irrigation. Overall, median N2O flux was significantly different among the ecosystems with the highest from the cropland (25.3 N2O-N µg m−2 h−1), intermediate (8.2 N2O-N µg m−2 h−1) from the Tamarix and the lowest (4.0 N2O-N µg m−2 h−1) from the grassland ecosystem. The 15N isotopic signatures in N2O emitted from the soil were also significantly affected by the LUC with more depleted from cropland (− 25.3 ‰) and less depleted from grassland (− 0.18 ‰). Our results suggested that the conversion of native saline–alkaline grassland with low N to Tamarix or cropland is likely to result in increased soil N2O emission and also contributes significantly to the depletion of the 15N in atmospheric N2O, and the contribution of anthropogenic N addition was found more significant than any other processes.


2020 ◽  
Vol 26 (1) ◽  
pp. 29-33
Author(s):  
Daniel W. Hernandez

ABSTRACT The Calaveras Dam Replacement Project, a major construction project completed in 2019, involved hundreds of workers using heavy earth-moving equipment and mining operations, including blasting, drilling, rock crushing, and other operations designed to move millions of cubic yards of earth. Much of the material was composed of serpentinite, blueschist, and other rocks that contain chrysotile and a variety of amphibole minerals, including glaucophane, winchite, actinolite, tremolite, and other asbestos-related amphiboles. This article explores the unique characteristics of the blueschist that required extensive protective measures to be undertaken by the contractor to protect workers and surrounding sensitive receptors. This article will provide an overall summary of the dimensional characteristics of the airborne blueschist elongate mineral particles encountered during construction activities to compare and contrast current understanding of cleavage fragments versus asbestiform mineral fibers.


2020 ◽  
Vol 745 ◽  
pp. 140990
Author(s):  
Antonella Campopiano ◽  
Annapaola Cannizzaro ◽  
Angelo Olori ◽  
Federica Angelosanto ◽  
Maria Rosaria Bruno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document