scholarly journals Nitrogen isotopic signatures and fluxes of N2O in response to land-use change on naturally occurring saline–alkaline soil

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Arbindra Timilsina ◽  
Wenxu Dong ◽  
Jiafa Luo ◽  
Stuart Lindsey ◽  
Yuying Wang ◽  
...  

AbstractThe conversion of natural grassland to semi-natural or artificial ecosystems is a large-scale land-use change (LUC) commonly occurring to saline–alkaline land. Conversion of natural to artificial ecosystems, with addition of anthropogenic nitrogen (N) fertilizer, influences N availability in the soil that may result in higher N2O emission along with depletion of 15N, while converting from natural to semi-natural the influence may be small. So, this study assesses the impact of LUC on N2O emission and 15N in N2O emitted from naturally occurring saline–alkaline soil when changing from natural grassland (Phragmites australis) to semi-natural [Tamarix chinensis (Tamarix)] and to cropland (Gossypium spp.). The grassland and Tamarix ecosystems were not subject to any management practice, while the cropland received fertilizer and irrigation. Overall, median N2O flux was significantly different among the ecosystems with the highest from the cropland (25.3 N2O-N µg m−2 h−1), intermediate (8.2 N2O-N µg m−2 h−1) from the Tamarix and the lowest (4.0 N2O-N µg m−2 h−1) from the grassland ecosystem. The 15N isotopic signatures in N2O emitted from the soil were also significantly affected by the LUC with more depleted from cropland (− 25.3 ‰) and less depleted from grassland (− 0.18 ‰). Our results suggested that the conversion of native saline–alkaline grassland with low N to Tamarix or cropland is likely to result in increased soil N2O emission and also contributes significantly to the depletion of the 15N in atmospheric N2O, and the contribution of anthropogenic N addition was found more significant than any other processes.

2021 ◽  
Author(s):  
◽  
Roderick Charles James Boys

<p>During the anthropocene land use change has exacerbated erosion of the Soil Organic Carbon (SOC) rich topsoil in the Oporae Valley. As well as reducing the SOC content of the contemporary topsoil, the large scale redistribution of sediment has created a quantifiable long-term SOC sink in paleosols. Using contemporary native forest soils as a proxy, pasture covered topsoils contain ~40% less SOC (a loss of 5,338 T/[square kilometer] SOC). The pre-human paleosol at ~200 cm, an average 32 cm thickness, contains 9180 T/[square kilometer]. Significantly more SOC buried at depth than what currently exists in the contemporary topsoil indicates the relative importance of paleosols as C stores and the role of land use change on SOC. The preservation characteristics of a paleosol in the Oporae Valley are determined by slope angle and the relative position they hold in relation to the inter-fingering of the alluvial toeslope with the colluvial footslope. Groupings of [radioisotope carbon-14] ages in and above the pre-human paleosol allow for calculation of terrestrial sedimentation rates. At ~0.9 mm yr^-1 the terrestrial pre-human sedimentation rate averaged over the valley floor is approximately half (0.53) of the corresponding pre-human lake rate of ~1.7 mm yr^-1. As a proportion of the lake's anthropogenic sedimentation rate at ~4.8 mm yr^-1, the terrestrial anthropogenic sedimentation rate has slightly increased to ~2.8 mm yr^-1 (0.58 of the lake sedimentation rate). These initial findings demonstrate the potential for further research in this area, so that ongoing land-use change can be accurately incorporated into terrestrial carbon accounting.</p>


2021 ◽  
Author(s):  
◽  
Roderick Charles James Boys

<p>During the anthropocene land use change has exacerbated erosion of the Soil Organic Carbon (SOC) rich topsoil in the Oporae Valley. As well as reducing the SOC content of the contemporary topsoil, the large scale redistribution of sediment has created a quantifiable long-term SOC sink in paleosols. Using contemporary native forest soils as a proxy, pasture covered topsoils contain ~40% less SOC (a loss of 5,338 T/[square kilometer] SOC). The pre-human paleosol at ~200 cm, an average 32 cm thickness, contains 9180 T/[square kilometer]. Significantly more SOC buried at depth than what currently exists in the contemporary topsoil indicates the relative importance of paleosols as C stores and the role of land use change on SOC. The preservation characteristics of a paleosol in the Oporae Valley are determined by slope angle and the relative position they hold in relation to the inter-fingering of the alluvial toeslope with the colluvial footslope. Groupings of [radioisotope carbon-14] ages in and above the pre-human paleosol allow for calculation of terrestrial sedimentation rates. At ~0.9 mm yr^-1 the terrestrial pre-human sedimentation rate averaged over the valley floor is approximately half (0.53) of the corresponding pre-human lake rate of ~1.7 mm yr^-1. As a proportion of the lake's anthropogenic sedimentation rate at ~4.8 mm yr^-1, the terrestrial anthropogenic sedimentation rate has slightly increased to ~2.8 mm yr^-1 (0.58 of the lake sedimentation rate). These initial findings demonstrate the potential for further research in this area, so that ongoing land-use change can be accurately incorporated into terrestrial carbon accounting.</p>


2018 ◽  
Author(s):  
Chantelle Burton ◽  
Richard Betts ◽  
Manoel Cardoso ◽  
Ted R. Feldpausch ◽  
Anna Harper ◽  
...  

Abstract. The representation of disturbance is a critical factor in land-surface modelling, but is generally poorly constrained in carbon cycle models. In particular, land-use change and fire can be treated as large-scale disturbances without full representation of their underlying complexities and interactions. Here we describe developments to the land surface model JULES (Joint UK Land Environment Simulator) to represent land-use change and fire as separate disturbances. We use the HYDE (History Database of the Global Environment) land cover dataset to analyse the impact of land-use change on global vegetation, and couple the fire model INFERNO (INteractive Fire and Emission algoRithm for Natural envirOnments) to dynamic vegetation within JULES to assess how the representation of disturbance affects the simulation of present day vegetation. We test model performance, evaluating the inclusion of land use and fire disturbance against standard benchmarks. Using the Manhattan Metric, overall disturbance improves the simulation of vegetation cover compared to observations by up to 53 %. Grasses show an improvement of up to 52 %, with biases in extent reduced from −66 % to 13 %. Total woody cover improves by up to 121 % from a reduction in forest extent in the tropics, although simulated tree cover is now too sparse in some areas. Disturbance generally decreases tree and shrub cover and increases grasses. The results show that the disturbances provide important contributions to the realistic modelling of vegetation on a global scale, although in some areas fire and land-use together result in over-disturbance. This work provides a substantial contribution towards representing the full complexity and interactions between land-use change and fire that could be used in Earth System Models.


2013 ◽  
Vol 13 (3) ◽  
pp. 7431-7461 ◽  
Author(s):  
N. J. Warwick ◽  
A. T. Archibald ◽  
K. Ashworth ◽  
J. Dorsey ◽  
P. M. Edwards ◽  
...  

Abstract. In this study, we use a high resolution version of the Cambridge p-TOMCAT model, along with data collected during the 2008 NERC-funded Oxidant and Particle Photochemical Processes (OP3) project, to examine the potential impact of the expansion of oil palm in Borneo on air quality and atmospheric composition. Several model emission scenarios are run for the OP3 measurement period, incorporating emissions from both global datasets and local flux measurements. Isoprene fluxes observed at a forest site during OP3 were considerably less than fluxes calculated using the MEGAN model. Incorporating the observed isoprene fluxes into p-TOMCAT substantially improved the comparison between modelled and observed isoprene surface mixing ratios and OH concentrations relative to using the MEGAN emissions. If both observed isoprene fluxes and HOx recycling chemistry were included, the ability of the model to capture diurnal variations in isoprene and OH was further improved. However, a similar improvement was also achieved using a~standard chemical mechanism without HOx recycling, by fixing boundary layer isoprene concentrations over Borneo to follow the OP3 observations. Further model simulations, considering an extreme scenario with all of Borneo converted to oil palm plantation, were run to determine the maximum atmospheric impact of land use change in Borneo. In these simulations, the level of nitrogen oxides was found to be critical. If only isoprene emissions from oil palm are considered, then large scale conversion to oil palm produced a decrease in monthly mean surface ozone of up to ~20%. However, if related changes in NOx emissions from fertilisation, industrial processing and transport are also included then ozone increases of up to ~70% were calculated. Although the largest changes occurred locally, the model also calculated significant regional changes of O3, OH and other species downwind of Borneo and in the free troposphere.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


Author(s):  
Allison Neil

Soil properties are strongly influenced by the composition of the surrounding vegetation. We investigated soil properties of three ecosystems; a coniferous forest, a deciduous forest and an agricultural grassland, to determine the impact of land use change on soil properties. Disturbances such as deforestation followed by cultivation can severely alter soil properties, including losses of soil carbon. We collected nine 40 cm cores from three ecosystem types on the Roebuck Farm, north of Perth Village, Ontario, Canada. Dominant species in each ecosystem included hemlock and white pine in the coniferous forest; sugar maple, birch and beech in the deciduous forest; grasses, legumes and herbs in the grassland. Soil pH varied little between the three ecosystems and over depth. Soils under grassland vegetation had the highest bulk density, especially near the surface. The forest sites showed higher cation exchange capacity and soil moisture than the grassland; these differences largely resulted from higher organic matter levels in the surface forest soils. Vertical distribution of organic matter varied greatly amongst the three ecosystems. In the forest, more of the organic matter was located near the surface, while in the grassland organic matter concentrations varied little with depth. The results suggest that changes in land cover and land use alters litter inputs and nutrient cycling rates, modifying soil physical and chemical properties. Our results further suggest that conversion of forest into agricultural land in this area can lead to a decline in soil carbon storage.


Sign in / Sign up

Export Citation Format

Share Document