Forest succession rate and pathways on different surface deposit types in the boreal forest of northwestern Quebec

Ecoscience ◽  
2011 ◽  
Vol 18 (4) ◽  
pp. 329-340 ◽  
Author(s):  
Annie Belleau ◽  
Alain Leduc ◽  
Nicolas Lecomte ◽  
Yves Bergeron
2003 ◽  
Vol 79 (1) ◽  
pp. 132-146 ◽  
Author(s):  
Dennis Yemshanov ◽  
Ajith H Perera

We reviewed the published knowledge on forest succession in the North American boreal biome for its applicability in modelling forest cover change over large extents. At broader scales, forest succession can be viewed as forest cover change over time. Quantitative case studies of forest succession in peer-reviewed literature are reliable sources of information about changes in forest canopy composition. We reviewed the following aspects of forest succession in literature: disturbances; pathways of post-disturbance forest cover change; timing of successional steps; probabilities of post-disturbance forest cover change, and effects of geographic location and ecological site conditions on forest cover change. The results from studies in the literature, which were mostly based on sample plot observations, appeared to be sufficient to describe boreal forest cover change as a generalized discrete-state transition process, with the discrete states denoted by tree species dominance. In this paper, we outline an approach for incorporating published knowledge on forest succession into stochastic simulation models of boreal forest cover change in a standardized manner. We found that the lack of details in the literature on long-term forest succession, particularly on the influence of pre-disturbance forest cover composition, may be limiting factors in parameterizing simulation models. We suggest that the simulation models based on published information can provide a good foundation as null models, which can be further calibrated as detailed quantitative information on forest cover change becomes available. Key words: probabilistic model, transition matrix, boreal biome, landscape ecology


2011 ◽  
Vol 17 (2) ◽  
pp. 855-871 ◽  
Author(s):  
M. L. GOULDEN ◽  
A. M. S. MCMILLAN ◽  
G. C. WINSTON ◽  
A. V. ROCHA ◽  
K. L. MANIES ◽  
...  

2001 ◽  
Vol 79 (9) ◽  
pp. 1019-1027 ◽  
Author(s):  
Sonia Légaré ◽  
Yves Bergeron ◽  
Alain Leduc ◽  
David Paré

Variation in canopy composition can influence ecosystem processes, such as nutrient cycling and light transmittance, even when environmental soil conditions are similar. To determine whether forest cover type influences species composition of the understory vegetation (herbs and shrubs), the composition of this layer was studied on two different surface deposits, clay and till, and under four different forest cover types dominated, respectively, by Populus tremuloïdes Michx. (aspen), Betula papyrifera Marsh. (white birch), Pinus banksiana Lamb. (jack pine), and Picea glauca (Moench) Voss – Abies balsamea (L.) Mill. (spruce–fir) over similar environmental conditions. Detrended correspondence analysis and analysis of variance performed on the ordination scores revealed that understory plant composition was highly affected by surface deposit and forest cover. The gradient observed in the correspondence analysis proceeds from aspen, white birch, spruce–fir, to jack pine. Indicator species were identified for each surface deposit and cover type, and most of them were associated with either jack pine or aspen. The richness, evenness, and diversity of the understory vegetation did not vary between cover types, but were affected by surface deposit. By controlling ecosystem processes such as light transmittance and nutrient cycling, forest cover influences understory composition.Key words: cover, understory, composition, boreal forest, environmental condition.


2011 ◽  
Vol 89 (10) ◽  
pp. 908-920 ◽  
Author(s):  
James Hodson ◽  
Daniel Fortin ◽  
Louis Bélanger

Understory regeneration within canopy gaps in old-growth boreal forests may provide suitable habitat for wildlife typically associated with early-seral stages, leading to an increase in their abundance in late succession. We surveyed a chronosequence of postfire (17–265 years) and postharvest (3–63 years) stands in Canada’s eastern boreal forest to determine whether snowshoe hares ( Lepus americanus Erxleben, 1777) followed a bimodal abundance distribution with stand age that reflects changes in food and cover during postdisturbance succession. A strong peak in relative hare abundance occurred during the first 80 years of succession, with highest faecal pellet densities observed between 40 and 50 years after disturbance. Changes in hare abundance during this period were similar among fire- and clearcut-origin stands and closely tracked changes in lateral cover and vertical cover. Pellet density increased again in stands >180 years. Variation in hare abundance during late succession was partially mediated by gap dynamics, with highest pellet densities in stands occupied by an intermediate proportion of mortality-origin canopy gaps. Hares thus undergo rapid changes in abundance during early succession followed by a much longer period of subtle changes in density as stands develop old-growth structure. Shifting forest age-class distribution induced by forest management could therefore significantly alter regional spatiotemporal dynamics of snowshoe hares.


2008 ◽  
Vol 17 (4) ◽  
pp. 443 ◽  
Author(s):  
Nancy H. F. French ◽  
Eric S. Kasischke ◽  
Ronald J. Hall ◽  
Karen A. Murphy ◽  
David L. Verbyla ◽  
...  

There has been considerable interest in the recent literature regarding the assessment of post-fire effects on forested areas within the North American boreal forest. Assessing the physical and ecological effects of fire in boreal forests has far-reaching implications for a variety of ecosystem processes – such as post-fire forest succession – and land management decisions. The present paper reviews past assessments and the studies presented in this special issue that have largely been based on the Composite Burn Index and differenced Normalized Burn Ratio (dNBR). Results from relating and mapping fire/burn severity within the boreal region have been variable, and are likely attributed, in part, to the wide variability in vegetation and terrain conditions that are characteristic of the region. Satellite remote sensing of post-fire effects alone without proper field calibration should be avoided. A sampling approach combining field and image values of burn condition is necessary for successful mapping of fire/burn severity. Satellite-based assessments of fire/burn severity, and in particular dNBR and related indices, need to be used judiciously and assessed for appropriateness based on the users’ need. Issues unique to high latitudes also need to be considered when using satellite-derived information in the boreal forest region.


2005 ◽  
Vol 35 (11) ◽  
pp. 2765-2773 ◽  
Author(s):  
Eliot JB McIntire ◽  
Robin Duchesneau ◽  
JP (Hamish) Kimmins

Sustainable forest management that employs the emulation of natural disturbance paradigm develops plans based on disturbance-driven forest succession. However, most research on forest succession has focused primarily on postdisturbance species change, often ignoring predisturbance legacies. We used the FORECAST ecosystem management model and a newly created natural regeneration submodel to examine the interaction of fire severity, fire frequency, and natural regeneration to produce multicycle dynamics of white spruce (Picea glauca (Moench) Voss), lodgepole pine (Pinus contorta Dougl. ex Loud.), and trembling aspen (Populus tremuloides Michx.) in a western Canadian boreal forest. We simulated 19 different scenarios in a factorial disturbance experiment of three severities and six frequencies and a no-disturbance scenario. Our simulations resulted in a wide diversity of boreal forest community types, including trembling aspen dominated mixedwoods with high-frequency (75 year), high-severity (100% mortality) fires, and nearly pure lodgepole pine stands at midfrequency (100–125 year) and high-severity fires. With the unvarying disturbance regimes we used, a variety of different but recurring temporal patterns emerged. We show that the loss of seed source legacies reinforces the disturbance-driven species dominance, demonstrating community inertia. This study provides a long-term perspective to boreal forest management that demonstrates the role of disturbance and legacies in long-term dynamics.


1978 ◽  
Vol 56 (9) ◽  
pp. 1157-1173 ◽  
Author(s):  
T. J. Carleton ◽  
P. F. Maycock

Ordination models of approximate environmental and dynamic relationship between eight boreal tree species were constructed based upon principal components analysis and Kruskal's nonmetric multidimensional scaling. The assumptions inherent in these models are stated and discussed. The data consisted of 152 forest stands from the closed-crown boreal forest zone of Ontario and Quebec south of James Bay. Sequential forest succession, as demonstrated by similar techniques for a section of the Wisconsin evergreen–hardwood forest, is not common in the region of boreal forest studied. However, for those species in common between this and the Wisconsin study, similar dynamic pathways are indicated despite differences in sample size and field technique. Tree species developmental pathways, as indicated by 'succession vectors' on the ordination models are, for the most part, short and circular with the exception of Abies balsamea (balsam fir). This reflects the reestablishment of similar, relatively monospecific forest stands following catastrophic forest destruction by fire and (or) other agencies. Where catastrophe does not intervene, deciduous primary forest species may be succeeded by an understory of A. balsamea or by Picea mariana (black spruce). Equally, some forest stands of primary establishment may become decadent with little or no subsequent tree growth. These observations are discussed with respect to the general notion of forest succession.


Sign in / Sign up

Export Citation Format

Share Document