scholarly journals Collision Avoidance Algorithm for Unmanned Surface Vehicle Based on Improved Artificial Potential Field and Ant Colony Optimization

Author(s):  
Wen Ou ◽  
Xuan Guo
2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092530
Author(s):  
Guoge Tan ◽  
Jiayuan Zhuang ◽  
Jin Zou ◽  
Lei Wan ◽  
Zhiyuan Sun

Using multiple unmanned surface vehicle swarms to implement tasks cooperatively is the most advanced technology in recent years. However, how to find which swarm the unmanned surface vehicle belongs to is a meaningful job. So, this article proposed an artificial potential field-based swarm finding algorithm, which applies the potential field force directly to unmanned surface vehicles and leads them to their belonging swarm quickly and accurately. Meanwhile, the proposed algorithm can also maintain the formation stable while following the desired path. Based on the swarm finding algorithm, the artificial potential field-based collision avoidance method and the International Regulations for Preventing Collisions at Sea-based dynamic collision avoidance strategy are applied to the swarm control of multi-unmanned surface vehicles to enhance the performance in the dynamic ocean environment. Methods in this article are verified through numerical simulations to illustrate the feasibility and effectiveness of proposed schemes.


Author(s):  
Jun Tang ◽  
Jiayi Sun ◽  
Cong Lu ◽  
Songyang Lao

Multi-unmanned aerial vehicle trajectory planning is one of the most complex global optimum problems in multi-unmanned aerial vehicle coordinated control. Results of recent research works on trajectory planning reveal persisting theoretical and practical problems. To mitigate them, this paper proposes a novel optimized artificial potential field algorithm for multi-unmanned aerial vehicle operations in a three-dimensional dynamic space. For all purposes, this study considers the unmanned aerial vehicles and obstacles as spheres and cylinders with negative electricity, respectively, while the targets are considered spheres with positive electricity. However, the conventional artificial potential field algorithm is restricted to a single unmanned aerial vehicle trajectory planning in two-dimensional space and usually fails to ensure collision avoidance. To deal with this challenge, we propose a method with a distance factor and jump strategy to resolve common problems such as unreachable targets and ensure that the unmanned aerial vehicle does not collide into the obstacles. The method takes companion unmanned aerial vehicles as the dynamic obstacles to realize collaborative trajectory planning. Besides, the method solves jitter problems using the dynamic step adjustment method and climb strategy. It is validated in quantitative test simulation models and reasonable results are generated for a three-dimensional simulated urban environment.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1162 ◽  
Author(s):  
Yang Huang ◽  
Jun Tang ◽  
Songyang Lao

The problem of collision avoidance of an unmanned aerial vehicle (UAV) group is studied in this paper. A collision avoidance method of UAV group formation based on second-order consensus algorithm and improved artificial potential field is proposed. Based on the method, the UAV group can form a predetermined formation from any initial state and fly to the target position in normal flight, and can avoid collision according to the improved smooth artificial potential field method when encountering an obstacle. The UAV group adopts the “leader–follower” strategy, that is, the leader UAV is the controller and flies independently according to the mission requirements, while the follower UAV follows the leader UAV based on the second-order consensus algorithm and formations gradually form during the flight. Based on the second-order consensus algorithm, the UAV group can achieve formation maintenance easily and the Laplacian matrix used in the algorithm is symmetric for an undirected graph. In the process of obstacle avoidance, the improved artificial potential field method can solve the jitter problem that the traditional artificial potential field method causes for the UAV and avoids violent jitter. Finally, simulation experiments of two scenarios were designed to verify the collision avoidance effect and formation retention effect of static obstacles and dynamic obstacles while the two UAV groups fly in opposite symmetry in the dynamic obstacle scenario. The experimental results demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document