scholarly journals Design of a Integrated readout Circuit for pH Sensor with Chopper Instrumentation Amplifier

Author(s):  
Yang Wang ◽  
Jiang Hu ◽  
Zongqi Guan
2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Guo-Ming Sung ◽  
Hsin-Kwang Wang ◽  
Leenendra Chowdary Gunnam

This work presents a one-dimensional magnetic chip composed of a hybrid magnetosensor and a readout circuit, which were fabricated with 0.18 μm 1P6M CMOS technology. The proposed magnetosensor includes a polysilicon cross-shaped Hall plate and two separated metal-oxide semiconductor field-effect transistors (MOSFETs) to sense the magnetic induction perpendicular to the chip surface. The readout circuit, which comprises a current-to-voltage converter, a low-pass filter, and an instrumentation amplifier, is designed to amplify the output Hall voltage with a gain of 43 dB. Furthermore, a SPICE macro model is proposed to predict the sensor’s performance in advance and to ensure sufficient comprehension of the magnetic mechanism of the proposed magnetosensor. Both simulated and measured results verify the correctness and flexibility of the proposed SPICE macro model. Measurements reveal that the maximum output Hall voltage VH, the optimum current-related magnetosensitivity SRI, the optimum voltage-related magnetosensitivity SRV, the averaged nonlinearity error NLE, and the relative bias current Ibias are 4.381 mV, 520.5 V/A·T, 40.04 V/V·T, 7.19%, and 200 μA, respectively, for the proposed 1-D magnetic chip with a readout circuit of 43 dB. The averaged NLE is small at high magnetic inductions of ±30 mT, whereas it is large at low magnetic inductions of ±30 G.


Author(s):  
Bing-Ze Xue ◽  
Paul C.-P. Chao ◽  
Bor-Shyh Lin ◽  
Chun-Yin Tsai ◽  
Tsung-Lin Chen ◽  
...  

This study presents a novel gas bio-sensor in the form of a micro-machined resonator and its readout circuit. The resonator has the structure of a clamped-clamped beam with thermal actuation and piezo-resistive sensing that supports a plate capable of being attached with test gas molecules to detect gas concentration. The purpose of this study is to design and fabricate the micro-scaled inertial beam with its readout circuit in a system-on-chip package. The circuit includes a driver, a front-end converter, a feed-trough reduction unit, a square-wave converter and a phase detector. In the process of signal reading, the sensor is first driven by a DDS module and power amplifier, and then sense the vibrations by piezo-resistivity. The piezo-resistivity is detected by a Wheatstone bridge circuits. The carried signal of modulation is processed by a Wheatstone bridge circuits. An instrumentation amplifier adjusts the gain to the appropriate amplitude. The circuit with reduction on feed-through noise increases the SNR. Square wave conversion circuit and PFD process the signal and the driver reference signal to detect phase difference. The data of phase difference is counted into a microcontroller dsPIC4011 and then the data being transmitted to the computer by RS232 to a USB adapter. Finally, the whole circuit is implemented by using TSMC 0.35 2P4M process and one-step postprocessing.


2013 ◽  
Vol 13 (5) ◽  
pp. 1941-1948 ◽  
Author(s):  
Mohanasundaram Sulur Veeramani ◽  
Prakash Shyam ◽  
Noel Prashant Ratchagar ◽  
Anju Chadha ◽  
Enakshi Bhattacharya ◽  
...  

2021 ◽  
Vol 11 (17) ◽  
pp. 7982
Author(s):  
Gyuri Choi ◽  
Hyunwoo Heo ◽  
Donggeun You ◽  
Hyungseup Kim ◽  
Kyeongsik Nam ◽  
...  

In this paper, a low-power and low-noise readout circuit for resistive-bridge microsensors is presented. The chopper-stabilized, recycling folded cascode current-feedback instrumentation amplifier (IA) is proposed to achieve the low-power, low-noise, and high-input impedance. The chopper-stabilized, recycling folded cascode topology (with a Monticelli-style, class-AB output stage) can enhance the overall noise characteristic, gain, and slew rate. The readout circuit consists of a chopper-stabilized, recycling folded cascode IA, low-pass filter (LPF), ADC driving buffer, and 12-bit successive-approximation-register (SAR) analog-to-digital converter (ADC). The prototype readout circuit is implemented in a standard 0.18 µm CMOS process, with an active area of 12.5 mm2. The measured input-referred noise at 1 Hz is 86.6 nV/√Hz and the noise efficiency factor (NEF) is 4.94, respectively. The total current consumption is 2.23 μA, with a 1.8 V power supply.


Chemosensors ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 351
Author(s):  
Jung-Chuan Chou ◽  
Yu-Hao Huang ◽  
Po-Yu Kuo ◽  
Chih-Hsien Lai ◽  
Yu-Hsun Nien ◽  
...  

In this research, we proposed a potentiometric sensor based on copper doped zinc oxide (CZO) films to detect glucose. Silver nanowires were used to improve the sensor’s average sensitivity, and we used the low power consumption instrumentation amplifier (UGFPCIA) designed by our research group to measure the sensing characteristics of the sensor. It was proved that the sensor performs better when using this system. In order to observe the stability of the sensor, we also studied the influence of two kinds of non-ideal effects on the sensor, such as the drift effect and the hysteresis effect. For this reason, we chose to combine the calibration readout circuit with the voltage-time (V-T) measurement system to optimize the measurement environment and successfully reduced the instability of the sensor. The drift rate was reduced by about 51.1%, and the hysteresis rate was reduced by 13% and 28% at different measurement cycles. In addition, the characteristics of the sensor under dynamic conditions were also investigated, and it was found that the sensor has an average sensitivity of 13.71 mV/mM and the linearity of 0.998 at a flow rate of 5.6 μL/min.


2014 ◽  
Vol 104 (22) ◽  
pp. 223503 ◽  
Author(s):  
Md Shamsul Arefin ◽  
M. Bulut Coskun ◽  
Tuncay Alan ◽  
Jean-Michel Redoute ◽  
Adrian Neild ◽  
...  

2009 ◽  
Vol E92-C (5) ◽  
pp. 708-712
Author(s):  
Dong-Heon HA ◽  
Chi Ho HWANG ◽  
Yong Soo LEE ◽  
Hee Chul LEE

2008 ◽  
Vol 62 (9) ◽  
pp. 1127-1130
Author(s):  
Yasuo Watanabe
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document