scholarly journals A One-Dimensional Magnetic Chip with a Hybrid Magnetosensor and a Readout Circuit

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Guo-Ming Sung ◽  
Hsin-Kwang Wang ◽  
Leenendra Chowdary Gunnam

This work presents a one-dimensional magnetic chip composed of a hybrid magnetosensor and a readout circuit, which were fabricated with 0.18 μm 1P6M CMOS technology. The proposed magnetosensor includes a polysilicon cross-shaped Hall plate and two separated metal-oxide semiconductor field-effect transistors (MOSFETs) to sense the magnetic induction perpendicular to the chip surface. The readout circuit, which comprises a current-to-voltage converter, a low-pass filter, and an instrumentation amplifier, is designed to amplify the output Hall voltage with a gain of 43 dB. Furthermore, a SPICE macro model is proposed to predict the sensor’s performance in advance and to ensure sufficient comprehension of the magnetic mechanism of the proposed magnetosensor. Both simulated and measured results verify the correctness and flexibility of the proposed SPICE macro model. Measurements reveal that the maximum output Hall voltage VH, the optimum current-related magnetosensitivity SRI, the optimum voltage-related magnetosensitivity SRV, the averaged nonlinearity error NLE, and the relative bias current Ibias are 4.381 mV, 520.5 V/A·T, 40.04 V/V·T, 7.19%, and 200 μA, respectively, for the proposed 1-D magnetic chip with a readout circuit of 43 dB. The averaged NLE is small at high magnetic inductions of ±30 mT, whereas it is large at low magnetic inductions of ±30 G.

2021 ◽  
Vol 11 (17) ◽  
pp. 7982
Author(s):  
Gyuri Choi ◽  
Hyunwoo Heo ◽  
Donggeun You ◽  
Hyungseup Kim ◽  
Kyeongsik Nam ◽  
...  

In this paper, a low-power and low-noise readout circuit for resistive-bridge microsensors is presented. The chopper-stabilized, recycling folded cascode current-feedback instrumentation amplifier (IA) is proposed to achieve the low-power, low-noise, and high-input impedance. The chopper-stabilized, recycling folded cascode topology (with a Monticelli-style, class-AB output stage) can enhance the overall noise characteristic, gain, and slew rate. The readout circuit consists of a chopper-stabilized, recycling folded cascode IA, low-pass filter (LPF), ADC driving buffer, and 12-bit successive-approximation-register (SAR) analog-to-digital converter (ADC). The prototype readout circuit is implemented in a standard 0.18 µm CMOS process, with an active area of 12.5 mm2. The measured input-referred noise at 1 Hz is 86.6 nV/√Hz and the noise efficiency factor (NEF) is 4.94, respectively. The total current consumption is 2.23 μA, with a 1.8 V power supply.


2020 ◽  
Vol 10 (1) ◽  
pp. 348 ◽  
Author(s):  
Donggeun You ◽  
Hyungseup Kim ◽  
Jaesung Kim ◽  
Kwonsang Han ◽  
Hyunwoo Heo ◽  
...  

This paper presents a low-noise reconfigurable sensor readout circuit with a multimodal sensing chain for voltage/current/resistive/capacitive microsensors such that it can interface with a voltage, current, resistive, or capacitive microsensor, and can be reconfigured for a specific sensor application. The multimodal sensor readout circuit consists of a reconfigurable amplifier, programmable gain amplifier (PGA), low-pass filter (LPF), and analog-to-digital converter (ADC). A chopper stabilization technique was implemented in a multi-path operational amplifier to mitigate 1/f noise and offsets. The 1/f noise and offsets were up-converted by a chopper circuit and caused an output ripple. An AC-coupled ripple rejection loop (RRL) was implemented to reduce the output ripple caused by the chopper. When the amplifier was operated in the discrete-time mode, for example, the capacitive-sensing mode, a correlated double sampling (CDS) scheme reduced the low-frequency noise. The readout circuit was designed to use the 0.18-µm complementary metal-oxide-semiconductor (CMOS) process with an active area of 9.61 mm2. The total power consumption was 2.552 mW with a 1.8-V supply voltage. The measured input referred noise in the voltage-sensing mode was 5.25 µVrms from 1 Hz to 200 Hz.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5173 ◽  
Author(s):  
Jorge Pérez-Bailón ◽  
Belén Calvo ◽  
Nicolás Medrano

This paper presents a fully integrated Gm–C low pass filter (LPF) based on a current steering Gm reduction-tuning technique, specifically designed to operate as the output stage of a SoC lock-in amplifier. To validate this proposal, a first-order and a second-order single-ended topology were integrated into a 1.8 V to 0.18 µm CMOS (Complementary Metal-Oxide-Semiconductor) process, showing experimentally a tuneable cutoff frequency that spanned five orders of magnitude, from tens of mHz to kHz, with a constant current consumption (below 3 µA/pole), compact size (<0.0140 mm2/pole), and a dynamic range better than 70 dB. Compared to state-of-the-art solutions, the proposed approach exhibited very competitive performances while simultaneously fully satisfying the demanding requirements of on-chip portable measurement systems in terms of highly efficient area and power. This is of special relevance, taking into account the current trend towards multichannel instruments to process sensor arrays, as the total area and power consumption will be proportional to the number of channels.


2013 ◽  
Vol 27 (26) ◽  
pp. 1350159
Author(s):  
HYUNJUNE LYU ◽  
JUN RIM CHOI

For the purpose of biomagnetic measurements, a magnetic sensor chip is manufactured using a 0.18 μm complementary metal–oxide–semiconductor (CMOS) process. A high-inductance coil and an instrumentation amplifier (IA) are embedded on this chip. The embedded high-inductance coil sensor contains suitable sensitivity and bandwidth for biomagnetic measurements, and is designed via electromagnetic field simulation. A low-gm operational transconductance amplifier (OTA) is also implemented on the chip to reduce the transconductance value. The output signal sensitivity of the magnetic sensor chip is 3.25 fT/μV, and the output reference noise is [Formula: see text]. The instrumentation amplifier is designed to minimize the magnetic signal noise using current feedback and a band-pass filter (BPF) with a bandwidth between 0.5 kHz and 5 kHz. The common-mode rejection ratio (CMRR) is measured at 117.5 dB by the Multi-Project Chip test. The proposed magnetic sensor chip is designed such that the input reference noise is maintained below 0.87 μV.


Author(s):  
Marty Johnson ◽  
Ozer Sacarcelik ◽  
Tony Harris

The reduction of sound transmission into rocket payload compartments is a challenging application for active control due to the broadband nature of the disturbance, the large structural and acoustic space and the very high acoustic levels required. The exterior acoustic field that drives the payload fairing at liftoff is typically in the order of 145dB and the active control system must be able to counteract this high drive level using lightweight actuators. This paper is concerned with the development of structural and acoustic actuators for this application with the emphasis on maximum output level in the 60–200Hz bandwidth for a given actuator weight. The electromagnetic structural actuators are based on powerful rare earth magnets in a two degree of freedom arrangement. It is shown that a two degree of freedom arrangement allows the output in the bandwidth of interest to be increased over a simple one degree of freedom arrangement. The design is termed a distributed active vibration absorber or DAVA as the second degree of freedom is provided by a light and distributed foam element that allows easy attachment and low stress concentration on the structure. The two degree of freedom arrangement also acts as a natural low pass filter to naturally remove unwanted spillover at higher frequencies. The acoustic component is also based on powerful rare earth magnets, however the two degree of freedom arrangement used for the structural actuator is no longer of interest. The main concern is in the reduction of the speaker and cabinet weight. It is shown that careful design of the speaker and cabinet can lead to large reductions in weight without loss of performance. Data taken from an active control experiment on a large composite cylinder, coupled with data from the characterization of the actuators will be used to determine the total actuator weight needed for control in a typical launch environment.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7343
Author(s):  
Montree Kumngern ◽  
Nattharinee Aupithak ◽  
Fabian Khateb ◽  
Tomasz Kulej

This paper presents a 0.5 V fifth-order Butterworth low-pass filter based on multiple-input operational transconductance amplifiers (OTA). The filter is designed for electrocardiogram (ECG) acquisition systems and operates in the subthreshold region with nano-watt power consumption. The used multiple-input technique simplifies the overall structure of the OTA and reduces the number of active elements needed to realize the filter. The filter was designed and simulated in the Cadence environment using a 0.18 µm Complementary Metal Oxide Semiconductor (CMOS) process from Taiwan Semiconductor Manufacturing Company (TSMC). Simulation results show that the filter has a bandwidth of 250 Hz, a power consumption of 34.65 nW, a dynamic range of 63.24 dB, attaining a figure-of-merit of 0.0191 pJ. The corner (process, voltage, temperature: PVT) and Monte Carlo (MC) analyses are included to prove the robustness of the filter.


Sign in / Sign up

Export Citation Format

Share Document