scholarly journals Energy demand of workplace computer solutions - A comprehensive assessment including both end-user devices and the power consumption they induce in data centers

Author(s):  
Ralph Hintemann ◽  
Klaus Fichter
Author(s):  
Mohammad H. Naraghi

The clear sky and monthly clearness index models are used to evaluate the hourly and monthly insolation on unit area of a tilted surface for the entire year. The hourly power consumption of a typical municipality (for this case New York City) for typical summer and winter days are used to determine the tilt and azimuth angles of a solar panel such that the solar energy reached the panel best match the energy consumption pattern. For the example case considered, in this work New York City, the electric power consumption peaks during summers at afternoon hours, due to increase in building cooling loads. It is found that orienting the solar panel at a westward azimuth angle with a tilt angle that results in maximum annual insolation is the best orientation of the solar panel for responding to both the peak energy demand and having reasonably high overall annual power generation. Although the model is used to optimize the solar panel orientation for New York City, it can however, be used for any building at any location as long as the needed solar data and power consumption pattern are known.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5719
Author(s):  
JiHyun Hwang ◽  
Taewon Lee

The recent expansion of the internet network and rapid advancements in information and communication technology are expected to lead to a significant increase in power consumption and the number of data centers. However, these data centers consume a considerable amount of electric power all year round, regardless of working days or holidays; thus, energy saving at these facilities has become essential. A disproportionate level of power consumption is concentrated in computer rooms because air conditioners in these rooms are required to operate throughout the year to maintain a constant indoor environment for stable operation of computer equipment with high-heat release densities. Considerable energy-saving potential is expected in such computer rooms, which consume high levels of energy, if an outdoor air-cooling system and air conditioners are installed. These systems can reduce the indoor space temperature by introducing a relatively low outdoor air temperature. Therefore, we studied the energy-saving effect of introducing an outdoor air-cooling system in a computer room with a disorganized arrangement of servers and an inadequate air conditioning system in a research complex in Korea. The findings of this study confirmed that annual energy savings of up to approximately 40% can be achieved.


Author(s):  
Moad Seddiki ◽  
Rocío Pérez de Prado ◽  
José Enrique Munoz-Expósito ◽  
Sebastián García-Galán

2019 ◽  
Vol 11 (18) ◽  
pp. 4937 ◽  
Author(s):  
Jing Ni ◽  
Bowen Jin ◽  
Shanglei Ning ◽  
Xiaowei Wang

The energy consumption of fast-growing data centers is drawing attentions from not only energy organizations and institutions all over the world, but also charity groups, such as Greenpeace, and research shows that the power consumption of air conditioning makes up a large proportion of the electricity cost in data centers. Therefore, more detailed investigations of air conditioning power consumption are warranted. Three types of airflow distributions with different aisle layouts (the open aisle, the closed cold aisle, and the closed hot aisle) were investigated with Computational Fluid Dynamics (CFD) methods in a typical data center of four rows of racks in this study. To evaluate the results of thermal and bypass phenomenon, the temperature increase index (β) and the energy utilization index (ηr) were used. The simulations show that there is a better trend of the β index and ηr index both closed cold aisle and closed hot aisle compared with free open aisle. Especially with high air flow rate, the β index decreases and the ηr index increases considerably. Moreover, the results prove the closed aisles (both closed cold aisle and closed hot aisle) can not only significantly improve the airflow distribution, but also reduce the mixture of cold and heat flow, and therefore improve energy efficiency. In addition, it proves the design of the closed aisles can meet the increasing density of installations and our simulation method could evaluate the cooling capacity easily.


2013 ◽  
Vol 39 ◽  
pp. 152-171 ◽  
Author(s):  
Liang Luo ◽  
Wenjun Wu ◽  
W.T. Tsai ◽  
Dichen Di ◽  
Fei Zhang

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Aravind Kailas ◽  
Valentina Cecchi ◽  
Arindam Mukherjee

With the exploding power consumption in private households and increasing environmental and regulatory restraints, the need to improve the overall efficiency of electrical networks has never been greater. That being said, the most efficient way to minimize the power consumption is by voluntary mitigation of home electric energy consumption, based on energy-awareness and automatic or manual reduction of standby power of idling home appliances. Deploying bi-directional smart meters and home energy management (HEM) agents that provision real-time usage monitoring and remote control, will enable HEM in “smart households.” Furthermore, the traditionally inelastic demand curve has began to change, and these emerging HEM technologies enable consumers (industrial to residential) to respond to the energy market behavior to reduce their consumption at peak prices, to supply reserves on a as-needed basis, and to reduce demand on the electric grid. Because the development of smart grid-related activities has resulted in an increased interest in demand response (DR) and demand side management (DSM) programs, this paper presents some popular DR and DSM initiatives that include planning, implementation and evaluation techniques for reducing energy consumption and peak electricity demand. The paper then focuses on reviewing and distinguishing the various state-of-the-art HEM control and networking technologies, and outlines directions for promoting the shift towards a society with low energy demand and low greenhouse gas emissions. The paper also surveys the existing software and hardware tools, platforms, and test beds for evaluating the performance of the information and communications technologies that are at the core of future smart grids. It is envisioned that this paper will inspire future research and design efforts in developing standardized and user-friendly smart energy monitoring systems that are suitable for wide scale deployment in homes.


Sign in / Sign up

Export Citation Format

Share Document