scholarly journals Anestesia y Déficit de glucosa-6-fosfato deshidrogenasa. Revisión a propósito de un caso.

2019 ◽  
Vol 11 (11) ◽  
pp. 1
Author(s):  
Yaiza Beatriz Molero Diez ◽  
José Luis González Rodríguez

El déficit de glucosa-6-fosfato deshidrogenasa es el defecto enzimático más frecuente de los glóbulos rojos en los seres humanos. Esta alteración está relacionada con un defecto enzimático en la vía de las pentosas-fosfato y cursa con hemólisis. Evitar posibles desencadenantes de las crisis hemolíticas es la mejor estrategia de prevención; para ello, el anestesiólogo tiene que conocer adecuadamente los fármacos empleados para el procedimiento anestésico y cuales son aptos para su empleo en estos pacientes. Se presenta en el artículo una revisión sobre este déficit a propósito de un caso de un paciente que acude a someterse a una intervención quirúrgica con anestesia general. ABSTRACT Anesthesia and glucose-6-phosphate-dehydrogenase deficit. A case review The glucose-6-phosphate-dehydrogenase (G6PD) deficiency is the most common enzymatic disorder of the red blood cells in humans. This disorder is related with an enzymatic defect in the pentose-phosphate pathway which is characterized by hemolysis. The best prevention strategy is avoiding possible triggers of hemolytic crisis, for this purpose the anesthesiologist must know properly the drugs used in anesthesia that are suitable for using in these patients. We present in the article a review of this deficit by using a clinical case of a patient who goes to the operating room with general anesthesia.

Anemia ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Samuel Antwi-Baffour ◽  
Jonathan Kofi Adjei ◽  
Peter Owadee Forson ◽  
Stephen Akakpo ◽  
Ransford Kyeremeh ◽  
...  

Background. Glucose-6-phosphate dehydrogenase (G6PD) converts glucose-6-phosphate into 6-phosphogluconate in the pentose phosphate pathway and protects red blood cells (RBCs) from oxidative damage. Their deficiency therefore makes RBCs prone to haemolysis. Sickle cell disease (SCD) on the other hand is a hereditary blood disorder in which there is a single nucleotide substitution in the codon for amino acid 6 substituting glutamic acid with valine. SCD patients are prone to haemolysis due to the shape of their red blood cells and if they are deficient in G6PD, the haemolysis may escalate. Reported studies have indicated variations in the prevalence of G6PD deficiency in SCD patients and as such further work is required. The aim of this study was therefore to estimate the incidence of G-6-PD deficiency among SCD patients and to determine its impact on their RBC parameters as a measure of incidence of anaemia.Methods. A total of 120 clinically diagnosed SCD patients of genotypes HbSS and HbSC were recruited into the study. About 5ml of blood was collected via venipuncture from each patient and used to run G6PD, full blood count, and haemoglobin (Hb) electrophoresis tests. The data were analyzed using SPSS version 20 and Graphpad prism.Result. G6PD deficiency was detected in 43 (35.83%) of the participants made up of 16 (13.33%) males and 27 (22.50%) females of whom 17 (14.17%) had partial deficiency and 10 (8.33%) full deficiency. Statiscally significant differences p=0.036 and p=0.038 were established between the Hb concentration of the participants having a G6PD deficiency and those with normal G6PD activity for males and females, respectively.Conclusion. From the results obtained, it implies that G6PD deficiency may increase the severity of anaemia in SCD patients. There is therefore the need to screen all SCD patients for G6PD deficiency to ensure that their condition is not exacerbated during treatment.


2010 ◽  
Vol 08 (supp01) ◽  
pp. 101-109 ◽  
Author(s):  
XIN ZHAO ◽  
ZUOFENG LI ◽  
XIAOYAN ZHANG

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common hereditary enzymatic disorder of red blood cells in humans due to mutations in the G6PD gene. The G6PD enzyme catalyzes the first step in the pentose phosphate pathway to protect cells against oxidative stress. Mutations in the G6PD gene will cause functional variants with various biochemical and clinical phenotypes. So far, about 160 mutations along with more than 400 biochemical variants have been described. G6PD-MutDB is a disease-specific resource of G6PD deficiency, collecting and integrating G6PD mutations with biochemical and clinical phenotypes. Data of G6PD deficiency is manually extracted from published papers, focusing primarily on variants with identified mutation and well-described quantitative phenotypes. G6PD-MutDB implements an approach, CNSHA predictor, to help identify a potential chronic non-spherocytic hemolytic anemia (CNSHA) phenotype of an unknown mutation. G6PD-MutDB is believed to facilitate analysis of relationship between molecular mutation and functional phenotype of G6PD deficiency owing to convenient data resource and useful tools. This database is available from .


2009 ◽  
Vol 56 (3) ◽  
pp. 86-91 ◽  
Author(s):  
Cpt Ali R. Elyassi ◽  
Maj Henry H. Rowshan

Abstract Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymatic disorder of red blood cells in humans. It is estimated that about 400 million people are affected by this deficiency.1 The G6PD enzyme catalyzes the first step in the pentose phosphate pathway, leading to antioxidants that protect cells against oxidative damage.2 A G6PD-deficient patient, therefore, lacks the ability to protect red blood cells against oxidative stresses from certain drugs, metabolic conditions, infections, and ingestion of fava beans.3 The following is a literature review, including disease background, pathophysiology, and clinical implications, to help guide the clinician in management of the G6PD-deficient patient. A literature search was conducted in the following databases: PubMed, The Cochrane Library, Web of Science, OMIM, and Google; this was supplemented by a search for selected authors. Keywords used were glucose-6-phosphate dehydrogenase (G6PD) deficiency, anesthesia, analgesia, anxiolysis, management, favism, hemolytic anemia, benzodiazepines, codeine, codeine derivatives, ketamine, barbiturates, propofol, opioids, fentanyl, and inhalation anesthetics. Based on titles and abstracts, 23 papers and 1 website were identified. The highest prevalence of G6PD is reported in Africa, southern Europe, the Middle East, Southeast Asia, and the central and southern Pacific islands; however, G6PD deficiency has now migrated to become a worldwide disease. Numerous drugs, infections, and metabolic conditions have been shown to cause acute hemolysis of red blood cells in the G6PD-deficient patient, with the rare need for blood transfusion. Benzodiazepines, codeine/codeine derivatives, propofol, fentanyl, and ketamine were not found to cause hemolytic crises in the G6PD-deficient patient. The most effective management strategy is to prevent hemolysis by avoiding oxidative stressors. Thus, management for pain and anxiety should include medications that are safe and have not been shown to cause hemolytic crises, such as benzodiazepines, codeine/codeine derviatives, propofol, fentanyl, and ketamine. The authors of this article make 5 particular recommendations: (1) Anyone suspected of G6PD deficiency should be screened; (2) exposure to oxidative stressors in these individuals should be avoided; (3) these patients should be informed of risks along with signs and symptoms of an acute hemolytic crisis; (4) the clinician should be able to identify both laboratory and clinical signs of hemolysis; and finally, (5) if an acute hemolytic crisis is identified, the patient should be admitted for close observation and care.


Author(s):  
Jitendar Mohan Khunger ◽  
Monika Gupta ◽  
Ankur Jain ◽  
Monica Khunger Malhotra

β-thalassaemia is one of the most prevalent autosomal disorders worldwide. Mutations/deletions in globin gene underlie deficiencies in Haemoglobin (Hb) production, which can interfere with oxygen delivery by Hb, resulting in thalassaemias causing anaemias with a wide range of disease severity. Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is a genetic abnormality resulting in inadequate amount of G6PD in the Red Blood Cells (RBCs). In patients with G6PD deficiency, the reduced or absent activity of the enzyme in RBCs causes premature haemolysis and symptomatic anaemia. The marked oxidative stress caused by homozygous β-thalassaemia is apparently incompatible with G6PD deficiency. Here, a rare case of six-month-old male child is described who presented with severe pallor hepato-splenomegaly and these two conditions co-existed in this patient.


2013 ◽  
Vol 304 (4) ◽  
pp. H491-H500 ◽  
Author(s):  
Peter A. Hecker ◽  
Jane A. Leopold ◽  
Sachin A. Gupte ◽  
Fabio A. Recchia ◽  
William C. Stanley

Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the rate-determining step in the pentose phosphate pathway and produces NADPH to fuel glutathione recycling. G6PD deficiency is the most common enzyme deficiency in humans and affects over 400 million people worldwide; however, its impact on cardiovascular disease is poorly understood. The glutathione pathway is paramount to antioxidant defense, and G6PD-deficient cells do not cope well with oxidative damage. Limited clinical evidence indicates that G6PD deficiency may be associated with hypertension. However, there are also data to support a protective role of G6PD deficiency in decreasing the risk of heart disease and cardiovascular-associated deaths, perhaps through a decrease in cholesterol synthesis. Studies in G6PD-deficient (G6PDX) mice are mixed and provide evidence for both protective and deleterious effects. G6PD deficiency may provide a protective effect through decreasing cholesterol synthesis, superoxide production, and reductive stress. However, recent studies indicate that G6PDX mice are moderately more susceptible to ventricular dilation in response to myocardial infarction or pressure overload-induced heart failure. Furthermore, G6PDX hearts do not recover as well as nondeficient mice when faced with ischemia-reperfusion injury, and G6PDX mice are susceptible to the development of age-associated cardiac hypertrophy. Overall, the limited available data indicate a complex interplay in which adverse effects of G6PD deficiency may outweigh potential protective effects in the face of cardiac stress. Definitive clinical studies in large populations are needed to determine the effects of G6PD deficiency on the development of cardiovascular disease and subsequent outcomes.


Author(s):  
Shaun R. McCann

Red blood cells, erythrocytes, are unique in that they do not contain a nucleus. This fact facilitates the study of their metabolism. Erythrocytes contain the protein pigment haemoglobin, which is in solution in the cells and consists of globin chains and iron. In this chapter, the development of the understanding of erythrocytes is linked to the blood conditions haemolytic anaemia and paroxysmal nocturnal haemoglobinuria. Premature destruction of erythrocytes, in the absence of blood loss, is termed haemolysis. If the bone marrow is unable to compensate adequately, then anaemia ensues and the condition is called haemolytic anaemia. The underlying defect is a deficiency in the activity of the enzyme glucose-6-phosphate dehydrogenase, termed G6PD deficiency.


1996 ◽  
Vol 6 (4) ◽  
pp. 165-174 ◽  
Author(s):  
Mary Bettey ◽  
W.E. Finch-Savage

AbstractThe rate of oxygen consumption by cabbage seeds increased on imbibition and there was a further sharp increase on germination. This was delayed in artificially aged seeds of low vigour. The increases in oxygen consumption reflect the increased oxidation of carbohydrates via respiratory pathways. The activities of key regulatory enzymes of glycolysis and the oxidative pentose phosphate pathway were measured in aged and unaged seed lots of cabbage. Differences in the activities of glucose 6-phosphate dehydrogenase and pyrophosphate:fructose 6-phosphate 1-phosphotransferase were correlated with the rate of germination (T50) in seed lots with large differences in seed vigour induced experimentally by artificial aging. However, the activities of these enzymes could not be used to distinguish between untreated seed lots which had smaller vigour differences apparent only under stress. The enzymes are presumably not controlling and determining seed vigour, but merely reflecting actual seed performance under the current conditions.


1986 ◽  
Vol 239 (3) ◽  
pp. 553-558 ◽  
Author(s):  
M Nogueira ◽  
G Garcia ◽  
C Mejuto ◽  
M Freire

A cofactor of Mr 10(4), characterized as a polypeptide, was found to co-operate with GSSG to prevent the inhibition of glucose-6-phosphate dehydrogenase by NADPH, in order to ensure the operation of the oxidative phase of the pentose phosphate pathway, in rat liver [Eggleston & Krebs (1974) Biochem. J. 138, 425-435; Rodriguez-Segade, Carrion & Freire (1979) Biochem. Biophys. Res. Commun. 89, 148-154]. This cofactor has now been partially purified by ion-exchange chromatography and molecular gel filtration, and characterized as a protein of Mr 10(5). The lighter cofactor reported previously was apparently the result of proteolytic activity generated during the tissue homogenization. The heavier cofactor was unstable, and its amount increased in livers of rats fed on carbohydrate-rich diet. Since the purified cofactor contained no glutathione reductase activity, the involvement of this enzyme in the deinhibitory mechanism of glucose-6-phosphate dehydrogenase by NADPH should be ruled out.


Sign in / Sign up

Export Citation Format

Share Document