scholarly journals Digital Wellness: A Smart Health Care System Using Machine Learning

Nowadays,people face various diseases due to environmental condition and their living habits. So the prediction of disease at an earlier stage becomes an important task. But the accurate prediction based on symptoms becomes too difficult for the doctor. The correctprediction of disease is the most challenging task. To overcome this problem data mining plays an important role to predict the disease. Medical science has a large amount of data growth per year. Due to the increasing amount of data growth in the medicaland healthcare field the accurate analysis of medical data has been benefits from early patient care. With the help of disease data, data mining finds hidden pattern information in a huge amount of medical data. We proposed general disease prediction based on the symptoms of the patient. For the disease prediction, we use Convolutional neural network (CNN) machine learning algorithm for the accurate prediction of disease. For disease prediction required disease symptoms dataset. After general disease prediction, this system able to gives the risk associated with a general disease which is a lower risk of general disease or highe

2021 ◽  
Vol 6 (4) ◽  
pp. 17-22
Author(s):  
Chandrasekhar Rao Jetti ◽  
Rehamatulla Shaik ◽  
Sadhik Shaik

It can occur on many occasions that you or a loved one requires urgent medical assistance, but they are unavailable due to unforeseen circumstances, or that we are unable to locate the appropriate doctor for the care. As a result, we will try to incorporate an online intelligent Smart Healthcare System in this project to solve this issue. It's a web-based programmed that allows patients to get immediate advice about their health problems. The aim of the smart healthcare system is to create a web application that can take a user's symptoms and predict diseases, as well as serve as an online consultant for various diseases. We created an expert system called Smart Health Care System, which is used to make doctors' jobs easier. A machine examines a patient at a basic level and recommends diseases that may be present. It begins by inquiring about the patient's symptoms; if the device is able to determine the relevant condition, it then recommends a doctor in the patient's immediate vicinity. The system will show the result based on the available accumulated data. We're going to use some clever data mining techniques here. We use several intelligent data mining techniques to guess the most accurate illness that could be associated with a patient's symptoms, and we use an algorithm (Naive Bayes) to map the symptoms with potential diseases based on a database of many patients' medical records. This system not only makes doctors' jobs easier, but it also benefits patients by getting them the care they need as soon as possible. Keywords: Disease Prediction, Naïve Bayes, Machine Learning Algorithm, Smart Healthcare System.


2021 ◽  
Vol 1088 (1) ◽  
pp. 012035
Author(s):  
Mulyawan ◽  
Agus Bahtiar ◽  
Githera Dwilestari ◽  
Fadhil Muhammad Basysyar ◽  
Nana Suarna

Predictive modelling is a mathematical technique which uses Statistics for prediction, due to the rapid growth of data over the cloud system, data mining plays a significant role. Here, the term data mining is a way of extracting knowledge from huge data sources where it’s increasing the attention in the field of medical application. Specifically, to analyse and extract the knowledge from both known and unknown patterns for effective medical diagnosis, treatment, management, prognosis, monitoring and screening process. But the historical medical data might include noisy, missing, inconsistent, imbalanced and high dimensional data.. This kind of data inconvenience lead to severe bias in predictive modelling and decreased the data mining approach performances. The various pre-processing and machine learning methods and models such as Supervised Learning, Unsupervised Learning and Reinforcement Learning in recent literature has been proposed. Hence the present research focuses on review and analyses the various model, algorithm and machine learning technique for clinical predictive modelling to obtain high performance results from numerous medical data which relates to the patients of multiple diseases.


In today’s world social media is one of the most important tool for communication that helps people to interact with each other and share their thoughts, knowledge or any other information. Some of the most popular social media websites are Facebook, Twitter, Whatsapp and Wechat etc. Since, it has a large impact on people’s daily life it can be used a source for any fake or misinformation. So it is important that any information presented on social media should be evaluated for its genuineness and originality in terms of the probability of correctness and reliability to trust the information exchange. In this work we have identified the features that can be helpful in predicting whether a given Tweet is Rumor or Information. Two machine learning algorithm are executed using WEKA tool for the classification that is Decision Tree and Support Vector Machine.


Author(s):  
Abhay Agrahary

Heart disease is one of the most fatal problems in the whole world, which cannot be seen with a naked eye and comes instantly when its limitations are reached. Therefore, it needs accurate diagnosis at accurate time. Health care industry produced huge amount of data every day related to patients and diseases. However, this data is not used efficiently by the researchers and practitioners. Today healthcare industry is rich in data however poor in knowledge. There are various data mining and machine learning techniques and tools available to extract effective knowledge from databases and to use this knowledge for more accurate diagnosis and decision making. Increasing research on heart disease predicting systems, it become significant to summarize the completely incomplete research on it. The main objective of this research paper is to summarize the recent research with comparative results that has been done on heart disease prediction and also make analytical conclusions. From the study, it is observed Naive Bayes with Genetic algorithm; Decision Trees and Artificial Neural Networks techniques improve the accuracy of the heart disease prediction system in different scenarios. In this paper commonly used data mining and machine learning techniques and their complexities are summarized.


Sign in / Sign up

Export Citation Format

Share Document