Plastic Waste Road Construction in Madhya Pradesh

Plastic or polythene bags, these non-biodegradable toxic items have been playing a major role in degrading our environment, especially our oceans. But now there might be a solution to tackle this mounting problem, using plastics to build roads. The idea is to create roads that are durable and also to get rid of potholes. Given the current plastic crisis, the aim of this case study is to make sure that plastic waste does not reach the landfills or water bodies and to ensure that the 3 R’s –Reduce, Reuse and Recycle are implanted effectively.

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
M. Opoku Amankwa ◽  
E. Kweinor Tetteh ◽  
G. Thabang Mohale ◽  
G. Dagba ◽  
P. Opoku

AbstractGlobal plastic waste generation is about 300 million metric tons annually and poses crucial health and environmental problems. Africa is the second most polluted continent in the world, with over 500 shipping containers of waste being imported every month. The US Environmental Protection Agency (EPA) report suggests that about 75% of this plastic waste ends up in landfills. However, landfills management is associated with high environmental costs and loss of energy. In addition, landfill leachates end up in water bodies, are very detrimental to human health, and poison marine ecosystems. Therefore, it is imperative to explore eco-friendly techniques to transform plastic waste into valuable products in a sustainable environment. The trade-offs of using plastic waste for road construction and as a component in cementitious composites are discussed. The challenges and benefits of producing liquid fuels from plastic waste are also addressed. The recycling of plastic waste to liquid end-products was found to be a sustainable way of helping the environment with beneficial economic impact.


2021 ◽  
Vol 13 (6) ◽  
pp. 3553
Author(s):  
Philippe Nimmegeers ◽  
Alexej Parchomenko ◽  
Paul De Meulenaere ◽  
Dagmar R. D’hooge ◽  
Paul H. M. Van Steenberge ◽  
...  

Multilevel statistical entropy analysis (SEA) is a method that has been recently proposed to evaluate circular economy strategies on the material, component and product levels to identify critical stages of resource and functionality losses. However, the comparison of technological alternatives may be difficult, and equal entropies do not necessarily correspond with equal recyclability. A coupling with energy consumption aspects is strongly recommended but largely lacking. The aim of this paper is to improve the multilevel SEA method to reliably assess the recyclability of plastics. Therefore, the multilevel SEA method is first applied to a conceptual case study of a fictitious bag filled with plastics, and the possibilities and limitations of the method are highlighted. Subsequently, it is proposed to extend the method with the computation of the relative decomposition energies of components and products. Finally, two recyclability metrics are proposed. A plastic waste collection bag filled with plastic bottles is used as a case study to illustrate the potential of the developed extended multilevel SEA method. The proposed extension allows us to estimate the recyclability of plastics. In future work, this method will be refined and other potential extensions will be studied together with applications to real-life plastic products and plastic waste streams.


2021 ◽  
Vol 13 (8) ◽  
pp. 4341
Author(s):  
Laima Česonienė ◽  
Daiva Šileikienė ◽  
Vitas Marozas ◽  
Laura Čiteikė

Twenty-six water bodies and 10 ponds were selected for this research. Anthropogenic loads were assessed according to pollution sources in individual water catchment basins. It was determined that 50% of the tested water bodies had Ntotal values that did not correspond to the good and very good ecological status classes, and 20% of the tested water bodies had Ptotal values that did not correspond to the good and very good ecological status classes. The lake basins and ponds received the largest amounts of pollution from agricultural sources with total nitrogen at 1554.13 t/year and phosphorus at 1.94 t/year, and from meadows and pastures with total nitrogen at 9.50 t/year and phosphorus at 0.20 t/year. The highest annual load of total nitrogen for lake basins on average per year was from agricultural pollution from arable land (98.85%), and the highest total phosphorus load was also from agricultural pollution from arable land (60%).


1990 ◽  
Vol 18 (4) ◽  
pp. 443-447 ◽  
Author(s):  
S. Kaushik ◽  
S. Sharma ◽  
M. N. Saxena ◽  
D. N. Saksena

Sign in / Sign up

Export Citation Format

Share Document