scholarly journals Impact of Climate Change on Electricity Demand: A Case Study of Pakistan

2016 ◽  
Vol 55 (1) ◽  
pp. 29-47 ◽  
Author(s):  
Rafat Mahmood ◽  
Sundus Saleemi ◽  
Sajid Amin

The energy sector is sensitive to changing weather patterns and Pakistan is one of those countries where temperature rise induced by climate change is expected to be above the world average. In this backdrop the present study aims at finding the impact of climate change on electricity demand in Pakistan at the regional and national level. Using monthly data on temperatures to find heating and cooling degree days, the relationship between monthly electricity demand and temperature is explored which is then used to find the impact of projected climate change on electricity demand. The results suggest surging peak loads in summer season due to climatic effect which calls for capacity instalments over and above that needed to cater to rise in electricity demand attributable to economic growth. JEL Classification: Q47, Q54 Keywords: Energy, Climate Change, Electricity Demand, Degree Days, Pakistan

2021 ◽  
Vol 228 ◽  
pp. 02005
Author(s):  
Lujian Bai ◽  
Bing Song

Climate has a key impact on building energy efficiency. The impact of climate change on heating and cooling degree-days of China during the past 60 years was studied in this paper. The meteorological data of 613 cities published by National Climate Center of China was applied in this research. The study results showed that the impact of climate change on the spatial distribution characteristics of heating and cooling degree-days is obvious. The area with HDD18 °C over 2000 d·°C has dramatic shrunk during recent 30 years compared with the period from 1964 to 1983, while the area with CDD26 °C over 90 d·°C has expanded during recent 30 years. The impact of climate change on the HDD18 °C and CDD26 °C of each city is inhomogeneity. The decrease of HDD18 °C mainly occurred in the north and northwest of China, and the increase of CDD26 mainly occurred in the southeast of China. The outcomes of this paper may provide a theoretical basis for building energy efficiency design in future.


2014 ◽  
Vol 53 (2) ◽  
pp. 300-309 ◽  
Author(s):  
Kyoungmi Lee ◽  
Hee-Jeong Baek ◽  
ChunHo Cho

AbstractIn South Korea, heating degree-days (HDD) and cooling degree-days (CDD) have been widely used as climatic indicators for the assessment of the impact of climate change, but arbitrary or customary base temperatures have been used for calculation of HDD and CDD. The purpose of this study is to determine real base temperatures to accurately calculate HDD and CDD for South Korea, using monthly electric energy consumption and mean temperature data from 2001 to 2010. The results reveal that the regional electricity demand generally depends on air temperature in a V-shaped curve in urban settings but in an L-shaped curve in rural settings, indicating that the sensitivity of the electricity demand to the temperature change is affected by the size of cities. The South Korean regional base temperatures, defined by a piecewise linear regression method, range from 14.7° to 19.4°C. These results suggest that the assessment of climate change impacts on the energy sector in South Korea should be carried out on a regional scale.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 715
Author(s):  
Cristina Andrade ◽  
Sandra Mourato ◽  
João Ramos

Climate change is expected to influence cooling and heating energy demand of residential buildings and affect overall thermal comfort. Towards this end, the heating (HDD) and cooling (CDD) degree-days along with HDD + CDD were computed from an ensemble of seven high-resolution bias-corrected simulations attained from EURO-CORDEX under two Representative Concentration Pathways (RCP4.5 and RCP8.5). These three indicators were analyzed for 1971–2000 (from E-OBS) and 2011–2040, and 2041–2070, under both RCPs. Results predict a decrease in HDDs most significant under RCP8.5. Conversely, it is projected an increase of CDD values for both scenarios. The decrease in HDDs is projected to be higher than the increase in CDDs hinting to an increase in the energy demand to cool internal environments in Portugal. Statistically significant linear CDD trends were only found for 2041–2070 under RCP4.5. Towards 2070, higher(lower) CDD (HDD and HDD + CDD) anomaly amplitudes are depicted, mainly under RCP8.5. Within the five NUTS II


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4805
Author(s):  
Shu Chen ◽  
Zhengen Ren ◽  
Zhi Tang ◽  
Xianrong Zhuo

Globally, buildings account for nearly 40% of the total primary energy consumption and are responsible for 20% of the total greenhouse gas emissions. Energy consumption in buildings is increasing with the increasing world population and improving standards of living. Current global warming conditions will inevitably impact building energy consumption. To address this issue, this report conducted a comprehensive study of the impact of climate change on residential building energy consumption. Using the methodology of morphing, the weather files were constructed based on the typical meteorological year (TMY) data and predicted data generated from eight typical global climate models (GCMs) for three representative concentration pathways (RCP2.6, RCP4.5, and RCP8.5) from 2020 to 2100. It was found that the most severe situation would occur in scenario RCP8.5, where the increase in temperature will reach 4.5 °C in eastern Australia from 2080–2099, which is 1 °C higher than that in other climate zones. With the construction of predicted weather files in 83 climate zones all across Australia, ten climate zones (cities)—ranging from heating-dominated to cooling-dominated regions—were selected as representative climate zones to illustrate the impact of climate change on heating and cooling energy consumption. The quantitative change in the energy requirements for space heating and cooling, along with the star rating, was simulated for two representative detached houses using the AccuRate software. It could be concluded that the RCP scenarios significantly affect the energy loads, which is consistent with changes in the ambient temperature. The heating load decreases for all climate zones, while the cooling load increases. Most regions in Australia will increase their energy consumption due to rising temperatures; however, the energy requirements of Adelaide and Perth would not change significantly, where the space heating and cooling loads are balanced due to decreasing heating and increasing cooling costs in most scenarios. The energy load in bigger houses will change more than that in smaller houses. Furthermore, Brisbane is the most sensitive region in terms of relative space energy changes, and Townsville appears to be the most sensitive area in terms of star rating change in this study. The impact of climate change on space building energy consumption in different climate zones should be considered in future design strategies due to the decades-long lifespans of Australian residential houses.


Időjárás ◽  
2019 ◽  
Vol 123 (3) ◽  
pp. 351-370 ◽  
Author(s):  
Aleksandar Janković ◽  
Zorica Podraščanin ◽  
Vladimir Djurdjevic

2020 ◽  
Vol 216 ◽  
pp. 109935 ◽  
Author(s):  
Delphine Ramon ◽  
Karen Allacker ◽  
Frank De Troyer ◽  
Hendrik Wouters ◽  
Nicole P.M. van Lipzig

2013 ◽  
Vol 52 (4I) ◽  
pp. 467-478 ◽  
Author(s):  
Rafat Mahmood ◽  
Sundus Saleemi ◽  
Sajid Amin

Out of the climatic variables such as temperature, humidity, precipitation, cloud cover, etc., electricity demand has been found most responsive to changes in temperature [Parkpoom and Harrison (2008); Al-Hamadi and Soliman (2005); Hor, et al. (2005)]. According to National Aeronautics and Space Administration, the decade from 2001 to 2010 was the warmest worldwide while the rise in surface temperatures of South Asia region by the end of the century is projected around 3.3oC average annually (IPCC);1 not only are the average temperatures rising but the range of extreme temperatures is also widening. Increase in temperatures can affect human lives significantly; the present study focusses on examining the impact of climate change on demand for electricity in Pakistan.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6188
Author(s):  
Marta Videras Rodríguez ◽  
Antonio Sánchez Cordero ◽  
Sergio Gómez Melgar ◽  
José Manuel Andújar Márquez

The growing concern about global climate change extends to different professional sectors. In the building industry, the energy consumption of buildings becomes a factor susceptible to change due to the direct relationship between the outside temperature and the energy needed to cool and heat the internal space. This document aims to estimate the energy consumption of a Minimum Energy Building (MEB) in different scenarios—past, present, and future—in the subtropical climate typical of seaside cities in Southern Spain. The building energy consumption has been predicted using dynamic building energy simulation software tools. Projected climate data were obtained in four time periods (Historical, the 2020s, 2050s, and 2080s), based on four emission scenarios defined by the Intergovernmental Panel on Climate Change (IPCC): B1, B2, A2, A1F1. This methodology has been mathematically complemented to obtain data in closer time frames (2025 and 2030). In addition, different mitigation strategies have been proposed to counteract the impact of climate change in the distant future. The different energy simulations carried on show clearly future trends of growth in total building energy consumption and how current building designers could be underestimating the problem of air conditioning needs in the subtropical zone. Electricity demand for heating is expected to decrease almost completely, while electricity demand for cooling increases considerably. The changes predicted are significant in all scenarios and periods, concluding an increase of between 28–51% in total primary energy consumption during the building life cycle. The proposed mitigation strategies show improvements in energy demands in a range of 11–14% and they could be considered in the initial stages of project design or incorporated in the future as the impact of climate change becomes more pronounced.


Sign in / Sign up

Export Citation Format

Share Document