The Estimation of Base Temperature for Heating and Cooling Degree-Days for South Korea

2014 ◽  
Vol 53 (2) ◽  
pp. 300-309 ◽  
Author(s):  
Kyoungmi Lee ◽  
Hee-Jeong Baek ◽  
ChunHo Cho

AbstractIn South Korea, heating degree-days (HDD) and cooling degree-days (CDD) have been widely used as climatic indicators for the assessment of the impact of climate change, but arbitrary or customary base temperatures have been used for calculation of HDD and CDD. The purpose of this study is to determine real base temperatures to accurately calculate HDD and CDD for South Korea, using monthly electric energy consumption and mean temperature data from 2001 to 2010. The results reveal that the regional electricity demand generally depends on air temperature in a V-shaped curve in urban settings but in an L-shaped curve in rural settings, indicating that the sensitivity of the electricity demand to the temperature change is affected by the size of cities. The South Korean regional base temperatures, defined by a piecewise linear regression method, range from 14.7° to 19.4°C. These results suggest that the assessment of climate change impacts on the energy sector in South Korea should be carried out on a regional scale.

2016 ◽  
Vol 55 (1) ◽  
pp. 29-47 ◽  
Author(s):  
Rafat Mahmood ◽  
Sundus Saleemi ◽  
Sajid Amin

The energy sector is sensitive to changing weather patterns and Pakistan is one of those countries where temperature rise induced by climate change is expected to be above the world average. In this backdrop the present study aims at finding the impact of climate change on electricity demand in Pakistan at the regional and national level. Using monthly data on temperatures to find heating and cooling degree days, the relationship between monthly electricity demand and temperature is explored which is then used to find the impact of projected climate change on electricity demand. The results suggest surging peak loads in summer season due to climatic effect which calls for capacity instalments over and above that needed to cater to rise in electricity demand attributable to economic growth. JEL Classification: Q47, Q54 Keywords: Energy, Climate Change, Electricity Demand, Degree Days, Pakistan


2021 ◽  
Vol 228 ◽  
pp. 02005
Author(s):  
Lujian Bai ◽  
Bing Song

Climate has a key impact on building energy efficiency. The impact of climate change on heating and cooling degree-days of China during the past 60 years was studied in this paper. The meteorological data of 613 cities published by National Climate Center of China was applied in this research. The study results showed that the impact of climate change on the spatial distribution characteristics of heating and cooling degree-days is obvious. The area with HDD18 °C over 2000 d·°C has dramatic shrunk during recent 30 years compared with the period from 1964 to 1983, while the area with CDD26 °C over 90 d·°C has expanded during recent 30 years. The impact of climate change on the HDD18 °C and CDD26 °C of each city is inhomogeneity. The decrease of HDD18 °C mainly occurred in the north and northwest of China, and the increase of CDD26 mainly occurred in the southeast of China. The outcomes of this paper may provide a theoretical basis for building energy efficiency design in future.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 715
Author(s):  
Cristina Andrade ◽  
Sandra Mourato ◽  
João Ramos

Climate change is expected to influence cooling and heating energy demand of residential buildings and affect overall thermal comfort. Towards this end, the heating (HDD) and cooling (CDD) degree-days along with HDD + CDD were computed from an ensemble of seven high-resolution bias-corrected simulations attained from EURO-CORDEX under two Representative Concentration Pathways (RCP4.5 and RCP8.5). These three indicators were analyzed for 1971–2000 (from E-OBS) and 2011–2040, and 2041–2070, under both RCPs. Results predict a decrease in HDDs most significant under RCP8.5. Conversely, it is projected an increase of CDD values for both scenarios. The decrease in HDDs is projected to be higher than the increase in CDDs hinting to an increase in the energy demand to cool internal environments in Portugal. Statistically significant linear CDD trends were only found for 2041–2070 under RCP4.5. Towards 2070, higher(lower) CDD (HDD and HDD + CDD) anomaly amplitudes are depicted, mainly under RCP8.5. Within the five NUTS II


Időjárás ◽  
2019 ◽  
Vol 123 (3) ◽  
pp. 351-370 ◽  
Author(s):  
Aleksandar Janković ◽  
Zorica Podraščanin ◽  
Vladimir Djurdjevic

2021 ◽  
Author(s):  
Alexandre Gauvain ◽  
Ronan Abhervé ◽  
Jean-Raynald de Dreuzy ◽  
Luc Aquilina ◽  
Frédéric Gresselin

<p>Like in other relatively flat coastal areas, flooding by aquifer overflow is a recurring problem on the western coast of Normandy (France). Threats are expected to be enhanced by the rise of the sea level and to have critical consequences on the future development and management of the territory. The delineation of the increased saturation areas is a required step to assess the impact of climate change locally. Preliminary models showed that vulnerability does not result only from the sea side but also from the continental side through the modifications of the hydrological regime.</p><p>We investigate the processes controlling these coastal flooding phenomena by using hydrogeological models calibrated at large scale with an innovative method reproducing the hydrographic network. Reference study sites selected for their proven sensitivity to flooding have been used to validate the methodology and determine the influence of the different geomorphological configurations frequently encountered along the coastal line.</p><p>Hydrogeological models show that the rise of the sea level induces an irregular increase in coastal aquifer saturations extending up to several kilometers inland. Back-littoral channels traditionally used as a large-scale drainage system against high tides limits the propagation of aquifer saturation upstream, provided that channels are not dominantly under maritime influence. High seepage fed by increased recharge occurring in climatic extremes may extend the vulnerable areas and further limit the effectiveness of the drainage system. Local configurations are investigated to categorize the influence of the local geological and geomorphological structures and upscale it at the regional scale.</p>


2011 ◽  
Vol 24 (17) ◽  
pp. 4741-4756 ◽  
Author(s):  
Weilin Chen ◽  
Zhihong Jiang ◽  
Laurent Li

Probabilistic projection of climate change consists of formulating the climate change information in a probabilistic manner at either global or regional scale. This can produce useful results for studies of the impact of climate change impact and change mitigation. In the present study, a simple yet effective approach is proposed with the purpose of producing probabilistic results of climate change over China for the middle and end of the twenty-first century under the Special Report on Emissions Scenarios A1B (SRES A1B) emission scenario. Data from 28 coupled atmosphere–ocean general circulation models (AOGCMs) are used. The methodology consists of ranking the 28 models, based on their ability to simulate climate over China in terms of two model evaluation metrics. Different weights were then given to the models according to their performances in present-day climate. Results of the evaluation for the current climate show that five models that have relatively higher resolutions—namely, the Istituto Nazionale di Geofisica e Vulcanologia ECHAM4 (INGV ECHAM4), the third climate configuration of the Met Office Unified Model (UKMO HadCM3), the CSIRO Mark version 3.5 (Mk3.5), the NCAR Community Climate System Model, version 3 (CCSM3), and the Model for Interdisciplinary Research on Climate 3.2, high-resolution version [MIROC3.2 (hires)]—perform better than others over China. Their corresponding weights (normalized to 1) are 0.289, 0.096, 0.058, 0.048, and 0.044, respectively. Under the A1B scenario, surface air temperature is projected to increase significantly for both the middle and end of the twenty-first century, with larger magnitude over the north and in winter. There are also significant increases in rainfall in the twenty-first century under the A1B scenario, especially for the period 2070–99. As far as the interannual variability is concerned, the most striking feature is that there are high probabilities for the future intensification of interannual variability of precipitation over most of China in both winter and summer. For instance, over the Yangtze–Huai River basin (28°–35°N, 105°–120°E), there is a 60% probability of increased interannual standard deviation of precipitation by 20% in summer, which is much higher than that of the mean precipitation. In general there are small differences between weighted and unweighted projections, but the uncertainties in the projected changes are reduced to some extent after weighting.


2011 ◽  
Vol 32 (4) ◽  
pp. 377-383 ◽  
Author(s):  
Sung-Hwan Cho ◽  
Hyeong-Jung Kim ◽  
M Zaheeruddin

Because of the rapid rise in ambient temperatures in urban cities due to global warming, this research study was conducted to revise the heating degree days (HDDs) for main cities of South Korea. Current HDDs used in the design of heating systems were established some 30 years ago. Therefore, there is a need to revisit and revise the HDDs used in Korea. The HDDs were computed at five different indoor set-point and unloaded temperatures. The validity of the methodology used for computing HDDs was ascertained by comparing the calculated HDDs with the published values. The impact of the length of time on total annual HDDs was examined. The results show that higher temperature trends due to global warming witnessed over the past decade in general decreased the HDDs. The impact was higher for warmer climate cities than the cold regions. The revised annual HDDs for 15 major cities of South Korea are presented in this paper. Practical applications: The HDDs corrected for global warming effects for 15 major cities of South Korea presented in this article are useful for designers in estimating the impact on equipment size and energy consumption. Towards this end, several scenarios of global warming effects are presented by assuming several unloaded temperature levels. This is useful for the designers in examining the uncertainties in the estimation of energy consumption. The results published are also important for policy makers in South Korea to examine the need for revising the degree day database in light of the global warming trends.


2021 ◽  
Vol 169 (3-4) ◽  
Author(s):  
Ponnambalam Rameshwaran ◽  
Victoria A. Bell ◽  
Helen N. Davies ◽  
Alison L. Kay

AbstractWest Africa and its semi-arid Sahelian region are one of the world’s most vulnerable regions to climate change with a history of extreme climate variability. There is still considerable uncertainty as to how projected climate change will affect precipitation at local and regional scales and the consequent impact on river flows and water resources across West Africa. Here, we aim to address this uncertainty by configuring a regional-scale hydrological model to West Africa. The model (hydrological modelling framework for West Africa—HMF-WA) simulates spatially consistent river flows on a 0.1° × 0.1° grid (approximately 10 km × 10 km) continuously across the whole domain and includes estimates of anthropogenic water use, wetland inundation, and local hydrological features such as endorheic regions. Regional-scale hydrological simulations driven by observed weather data are assessed against observed flows before undertaking an analysis of the impact of projected future climate scenarios from the CMIP5 on river flows up to the end of the twenty-first century. The results indicate that projected future changes in river flows are highly spatially variable across West Africa, particularly across the Sahelian region where the predicted changes are more pronounced. The study shows that median peak flows are projected to decrease by 23% in the west (e.g. Senegal) and increase by 80% in the eastern region (e.g. Chad) by the 2050s. The projected reductions in river flows in western Sahel lead to future droughts and water shortages more likely, while in the eastern Sahel, projected increases lead to future frequent floods.


Sign in / Sign up

Export Citation Format

Share Document