scholarly journals The effect of calcinated hydroxyapatite and magnesium doped hydroxyapatite as fillers on the mechanical properties of a model BisGMA/TEGDMA dental composite initially and after aging

10.30544/403 ◽  
2018 ◽  
Vol 24 (4) ◽  
Author(s):  
Tamara Matic ◽  
Maja Ležaja Zebić ◽  
Ivana Cvijović-Alagić ◽  
Vesna Miletić ◽  
Rada Petrović ◽  
...  

The aim of this study was to investigate the possibility of modifying model BisGMA/TEGDMA dental composite by substituting 10 wt. % of conventional glass fillers with bioactive fillers based on calcinated nanosized hydroxyapatite (HAp) and Mg doped hydroxyapatite (Mg-HAp). HAp and Mg-HAp powders were synthesized hydrothermally. Mechanical properties: hardness by Vickers (HV) and flexural strength (Fs) were tested initially and after being stored for 28 days in simulated body fluid (SBF). The experimental composites with HAp and Mg-HAp particles showed no statistically significant difference in HV compared to the control (p>0.05) either initially or after storage. Although mean Fs values of modified composites tested initially were lower (62 MPa) than those of the control (72 MPa), after 28 days of storage in SBF Fs values were greater for modified composites (42 MPa control sample, 48 MPa HAp and Mg-HAp samples). In vitro bioactivity of BisGMA/TEGDMA composites with HAp and Mg-HAp particles after 28 days in SBF was not detected. Keywords: hydroxyapatite; magnesium; dental composite; mechanical properties;

2011 ◽  
Vol 493-494 ◽  
pp. 582-587 ◽  
Author(s):  
Marziyeh Abbasi-Shahni ◽  
Saeed Hesaraki ◽  
Ali Asghar Behnam-Ghader ◽  
Masoud Hafezi-Ardakani

In this study, nanocomposites based on of β-tri calcium phosphate (β-TCP) and 2.5-10 wt% merwinite nanoparticles were prepared and sintered at 1100-1300°c.The mechanical properties were investigated by measuring compressive strength and fracture toughness. Structural properties were evaluated by XRD, TEM and SEM analysis, and the in vitro bioactivity was studied by soaking the samples in simulated body fluid (SBF). The mechanical strength of the sintered samples wereincreased, by increasing the amount of merwinite phase up to 5 wt%, whereas it decreased when the samples were sintered at 1100 and 1200°c. Nanostructured calcium phosphate layer was formed on the surfaces of the nanocomposites within 1 day immersion in simulated body fluid. Because of appropriate mechanical properties the composite is suggested to be used as substitute for hard tissue.


Author(s):  
Wen-Fan Chen ◽  
Yu-Sheng Tseng ◽  
Yu-Man Chang ◽  
Ji Zhang ◽  
Yun-Han Su ◽  
...  

2016 ◽  
Vol 103 ◽  
pp. 10-24 ◽  
Author(s):  
A.R. Rafieerad ◽  
A.R. Bushroa ◽  
B. Nasiri-Tabrizi ◽  
J. Vadivelu ◽  
S. Baradaran ◽  
...  

2022 ◽  
Vol 12 (2) ◽  
pp. 411-416
Author(s):  
Liang Tang ◽  
Si-Yu Zhao ◽  
Ya-Dong Yang ◽  
Geng Yang ◽  
Wen-Yuan Zhang ◽  
...  

To investigate the degradation, mechanical properties, and histocompatibility of weft-knitted silk mesh-like grafts, we carried out the In Vitro and In Vivo silk grafts degradation assay. The In Vitro degradation experiment was performed by immersing the silk grafts in simulated body fluid for 1 year, and the results showed that the degradation rate of the silk mesh-like grafts was very slow, and there were few changes in the mechanical properties and quality of the silk mesh-like graft. In Vivo degradation assay was taken by implantation of the silk mesh-like grafts into the subcutaneous muscles of rabbits. At 3, 6, and 12 months postoperation, the rate of mass loss was 19.36%, 31.84%, and 58.77%, respectively, and the maximum load was 63.85%, 34.63%, and 10.76%, respectively of that prior to degradation. The results showed that the degradation rate of the silk graft and the loss of mechanical properties In Vivo were faster than the results obtained in the In Vitro experiments. In addition, there were no significant differences in secretion of serum IL-6 and TNF-α between the experimental and normal rabbits (P >0.05), suggesting no obvious inflammatory reaction. The findings suggest that the weft-knitted silk mesh-like grafts have good mechanical properties, histocompatibility, and In Vivo degradation rate, and therefore represent a candidate material for artificial ligament


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4643
Author(s):  
Hamisah Ismail ◽  
Farah ‘Atiqah Abdul Azam ◽  
Zalita Zainuddin ◽  
Hamidun Bunawan ◽  
Muhamad Afiq Akbar ◽  
...  

β-wollastonite (βW) has sparked much interest in bone defect recovery and regeneration. Biomaterial-associated infections and reactions between implants with human cells have become a standard clinical concern. In this study, a green synthesized βW, synthesized from rice husk ash and a calcined limestone precursor, was incorporated with mullite, maghemite, and silver to produce β wollastonite composite (βWMAF) to enhance the tensile strength and antibacterial properties. The addition of mullite to the βWMAF increased the tensile strength compared to βW. In vitro bioactivity, antibacterial efficacy, and physicochemical properties of the β-wollastonite and βWMAF were characterized. βW and βWMAF samples formed apatite spherules when immersed in simulated body fluid (SBF) for 1 day. In conclusion, βWMAF, according to the tensile strength, bioactivity, and antibacterial activity, was observed in this research and appropriate for the reconstruction of cancellous bone defects.


2016 ◽  
Author(s):  
S. A. Syed Nuzul Fadzli ◽  
S. Roslinda ◽  
Firuz Zainuddin ◽  
Hamisah Ismail

2019 ◽  
Vol 6 (7) ◽  
pp. 075212 ◽  
Author(s):  
Rasha A Youness ◽  
Mohammed A Taha ◽  
Amany A El-Kheshen ◽  
Nabil El-Faramawy ◽  
Medhat Ibrahim

Sign in / Sign up

Export Citation Format

Share Document