scholarly journals Characterization of the sulfide deposits in the southeastern Nigeria using VLF method: insights from numerical modeling and field examples

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
D. E. Falebita ◽  
O. Afolabi ◽  
B. O Soyinka ◽  
A. A. Adepelumi

A priori geologic and geophysical information has been used to construct conceptual VLF experiments on conductively and inductively coupled overburden geological models of the lead-zinc (Pb-Zn) mineralization zone found in southeastern Nigeria. This is based on the finite element approach to (1) simulate different geologic situations of overburden occurrence, (2) examine the roles played by overburden in modifying and masking VLF responses of a buried conductor target, and (3) confirm the effectiveness of VLF method in mapping lead-zinc lodes found in sedimentary terrains. The computed theoretical model curves and field examples are expected to serve as guide for VLF anomaly pattern recognition due to overburden thickness, resistivity and width of conductor in similar terrain as the study area.

2020 ◽  
Vol 35 (10) ◽  
pp. 2369-2377
Author(s):  
Helmar Wiltsche ◽  
Matthias Wolfgang

The MICAP is a microwave driven plasma source employing nitrogen as the plasma gas. In this work we compare LODs and LOQs obtained in axial viewing with those obtained by ICP-OES and evaluate the effect of air instead of nitrogen as the plasma gas.


Paleobiology ◽  
2016 ◽  
Vol 43 (1) ◽  
pp. 68-84 ◽  
Author(s):  
Bradley Deline ◽  
William I. Ausich

AbstractA priori choices in the detail and breadth of a study are important in addressing scientific hypotheses. In particular, choices in the number and type of characters can greatly influence the results in studies of morphological diversity. A new character suite was constructed to examine trends in the disparity of early Paleozoic crinoids. Character-based rarefaction analysis indicated that a small subset of these characters (~20% of the complete data set) could be used to capture most of the properties of the entire data set in analyses of crinoids as a whole, noncamerate crinoids, and to a lesser extent camerate crinoids. This pattern may be the result of the covariance between characters and the characterization of rare morphologies that are not represented in the primary axes in morphospace. Shifting emphasis on different body regions (oral system, calyx, periproct system, and pelma) also influenced estimates of relative disparity between subclasses of crinoids. Given these results, morphological studies should include a pilot analysis to better examine the amount and type of data needed to address specific scientific hypotheses.


2014 ◽  
Vol 14 (1) ◽  
pp. 283-299 ◽  
Author(s):  
V. F. Sofieva ◽  
J. Tamminen ◽  
E. Kyrölä ◽  
T. Mielonen ◽  
P. Veefkind ◽  
...  

Abstract. A new ozone climatology, based on ozonesonde and satellite measurements, spanning the altitude region between the earth's surface and ~60 km is presented (TpO3 climatology). This climatology is novel in that the ozone profiles are categorized according to calendar month, latitude and local tropopause heights. Compared to the standard latitude–month categorization, this presentation improves the representativeness of the ozone climatology in the upper troposphere and the lower stratosphere (UTLS). The probability distribution of tropopause heights in each latitude–month bin provides additional climatological information and allows transforming/comparing the TpO3 climatology to a standard climatology of zonal mean ozone profiles. The TpO3 climatology is based on high-vertical-resolution measurements of ozone from the satellite-based Stratospheric Aerosol and Gas Experiment II (in 1984 to 2005) and from balloon-borne ozonesondes from 1980 to 2006. The main benefits of the TpO3 climatology are reduced standard deviations on climatological ozone profiles in the UTLS, partial characterization of longitudinal variability, and characterization of ozone profiles in the presence of double tropopauses. The first successful application of the TpO3 climatology as a priori in ozone profile retrievals from Ozone Monitoring Instrument on board the Earth Observing System (EOS) Aura satellite shows an improvement of ozone precision in UTLS of up to 10% compared with the use of conventional climatologies. In addition to being advantageous for use as a priori in satellite retrieval algorithms, the TpO3 climatology might be also useful for validating the representation of ozone in climate model simulations.


Sign in / Sign up

Export Citation Format

Share Document