scholarly journals Interspecific variation and phylogenic architecture of Pinus densata and the hybrid of Pinus tabuliformis×Pinus Yunnanensis in the Pinus densata habitat: an Electrical Impedance Spectra perspective

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Fengxiang Ma ◽  
Xiaoyang Chen ◽  
Yue Li

We evaluated a novel and non-destructive method of the electrical impedance spectroscopy (EIS) to elucidatethe genetic and evolutionary relationship of homoploid hybrid conifer of Pinus densata (P.d) and its parental species Pinus tabuliformis (P.t) and Pinus yunnanensis(P.y), as well as the artificial hybrids of the P.t and P.y.  Field common garden tests of96 trees sampled from 760 seedlings and 480 EIS records of 1,440 needles assessed the interspecific variation of the P.d, P.t, P.y and the artificial hybrids. We found that (1) EIS at different frequencies diverged significantly among germplasms; P.ywasthe highest, P.t was the lowest, and their artificial hybrids were within the range of P.t and P.y; (2) maternal species effect of EIS magnitudes inthe hybrids and P.d was stronger than the paternal species characteristics; (3)EIS of the artificial hybrid confirmed the mid-parent and partial maternal species characteristics;(4) unified exponential modelof EIS for the interspecific and hybrids canbe constructedas; (5) cluster analysis for species and hybrid combinationsin total corroborated with the previous hybrid model ofPinus densata. Our non-destructive EIS method complemented the previous finding that Pinus densata was originated from P.t and P.y.  We conclude that the impedance would be a viable indicator to investigate the interspecific genetic variations of conifers.  

2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Fengxiang Ma ◽  
Kangyi Lou ◽  
Xiaoyang Chen ◽  
Yue Li

We employed capacitance to evaluate the kinship and interspecific variation of homoploid hybrid conifer Pinus densata, P. tabuliformis, P. yunnanensis and artificial hybrids of P. tabuliformis (maternal parent) and P. yunnanensis (paternal parent) which were cultivated and selected in the common garden experiment.  By measuring capacitance spectra under different voltage frequencies, we could differentiate different germplasms based on the electrical response. We aims to demonstrate that P. densata as the hybrid of P. tabuliformis and P. yunnanensis based on the capacitance values of the species, and to provide new evidence to the previously known biological evidence, as well as and the parental effect on the hybrids. Our results revealed that capacitance values between the species are significantly different in the spectra where P. yunnanensis positioned at the lowest and P. densata was much higher than all other species, indicating that P. densata had possessed a great capacity to store electrical energy. The capacitance spectra of P. densata and the artificial hybrid are not similar, which rejected our hypothesis. Both of the capacitance values of P. densata and the hybrids were closer to P. tabuliformis than to P. yunnanensis, which shows that the maternal influence was stronger than the paternal influence. Correlation analysis on the relationship between capacitance and fitness-related characteristics showed that capacitance is negatively correlated to mortality rate, and positively correlated with second-year survival rate. High capacitance values of P. densata and some of the hybrids reveal their superior adaptability to harsh environment in the Tibet Plateau. We concluded that capacitance as a new indicator for plant fitness and evolution evidence of homoploid hybrid conifers.


2009 ◽  
Vol 68 ◽  
pp. 1-11 ◽  
Author(s):  
Esperanza Menéndez ◽  
José de Frutos ◽  
Carmen Andrade

In this work, different mortars with different degrees of damage brought about by the action of the freeze-thawing cycles are evaluated. Analysis of its state is carried out by different usual evaluation methods. Results obtained through these methods are compared with the electrical impedance spectroscopy. Moreover, this non-destructive technique is employed to evaluate the state of mortars and the amount of internal damage.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1223
Author(s):  
Rinku Basak ◽  
Khan A. Wahid ◽  
Anh Dinh

Algae are a significant component of a biological monitoring program in an aquatic ecosystem. They are ideally suited for water quality assessments because of their nutrient requirements, rapid reproduction rate, and very short life cycle. Algae composition and temporal variation in abundances are important in determining the trophic level of lakes, and those can be estimated by the Chlorophyll-a (Chl-a) concentration of the species. In this work, a non-destructive method was employed to estimate the Chlorophyll-a concentration of multiple algae species using electrical impedance spectroscopy (EIS). The proposed EIS method is rapid, cheaper, and suitable for in situ measurements compared with the other available non-destructive methods, such as spectrophotometry and hyperspectral or multispectral imaging. The electrical impedances in different frequencies ranging from 1 to 100 kHz were observed using an impedance converter system. Significant observations were identified within 3.5 kHz for multiple algae species and therefore reported in the results. A positive correlation was found between the Chlorophyll-a and the measured impedance of algae species at different frequencies. Later, EIS models were developed for the species in 1–3.5 kHz. A correlation of 90% was found by employing a least squares method and multiple linear regression. The corresponding coefficients of determination were obtained as 0.9, 0.885, and 0.915, respectively for 49 samples of Spirulina, 41 samples of Chlorella, and 26 samples of mixed algae species. The models were later validated using a new and separate set of samples of algae species.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1433
Author(s):  
Esther Tanumihardja ◽  
Douwe S. de Bruijn ◽  
Rolf H. Slaats ◽  
Wouter Olthuis ◽  
Albert van den Berg

A ruthenium oxide (RuOx) electrode was used to monitor contractile events of human pluripotent stem cells-derived cardiomyocytes (hPSC-CMs) through electrical impedance spectroscopy (EIS). Using RuOx electrodes presents an advantage over standard thin film Pt electrodes because the RuOx electrodes can also be used as electrochemical sensor for pH, O2, and nitric oxide, providing multisensory functionality with the same electrode. First, the EIS signal was validated in an optically transparent well-plate setup using Pt wire electrodes. This way, visual data could be recorded simultaneously. Frequency analyses of both EIS and the visual data revealed almost identical frequency components. This suggests both the EIS and visual data captured the similar events of the beating of (an area of) hPSC-CMs. Similar EIS measurement was then performed using the RuOx electrode, which yielded comparable signal and periodicity. This mode of operation adds to the versatility of the RuOx electrode’s use in in vitro studies.


2021 ◽  
Vol 232 (2) ◽  
Author(s):  
Rakibul Islam Chowdhury ◽  
Rinku Basak ◽  
Khan Arif Wahid ◽  
Katy Nugent ◽  
Helen Baulch

2020 ◽  
Vol 28 ◽  
pp. 1679-1685
Author(s):  
Angeliki-Eirini Dimou ◽  
Ioanna Sakellariou ◽  
George M. Maistros ◽  
Nikolaos D. Alexopoulos

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 1001
Author(s):  
Sooin Huh ◽  
Hye-Jin Kim ◽  
Seungah Lee ◽  
Jinwoo Cho ◽  
Aera Jang ◽  
...  

This study presents a system for assessing the freshness of meat with electrical impedance spectroscopy (EIS) in the frequency range of 125 Hz to 128 kHz combined with an image classifier for non-destructive and low-cost applications. The freshness standard is established by measuring the aerobic plate count (APC), 2-thiobarbituric acid reactive substances (TBARS), and composition analysis (crude fat, crude protein, and moisture) values of the microbiological detection to represent the correlation between EIS and meat freshness. The EIS and images of meat are combined to predict the freshness with the Adaboost classification and gradient boosting regression algorithms. As a result, when the elapsed time of beef storage for 48 h is classified into three classes, the time prediction accuracy is up to 85% compared to prediction accuracy of 56.7% when only images are used without EIS information. Significantly, the relative standard deviation (RSD) of APC and TBARS value predictions with EIS and images datum achieves 0.890 and 0.678, respectively.


Sign in / Sign up

Export Citation Format

Share Document