scholarly journals Impacts of Rice Field Winter Planting on Soil Organic Carbon and Carbon Management Index

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Haocheng Wang ◽  
Guoqin Huang

To tackle with the problem of prevailing farmland abandonment in winter, 5 treatments includes Chinese milk vetch-double cropping rice (CRR), rape-double cropping rice (RRR), garlic-double cropping rice (GRR), winter crop multiple cropping rotation (ROT), winter fallow control (WRR) were set up. By measuring soil total organic carbon, active organic carbon and its components and calculating the soil carbon pool management index in 0~15 cm and 15~30 cm soil layers in the early and late rice ripening stage. The effects of different winter planting patterns on the changes of soil organic carbon and carbon pool management index were discussed. In order to provide theoretical basis for the optimization and adjustment of winter planting pattern of double cropping rice field in the middle reaches of Yangtze River. The results showed that soil total organic carbon, active organic carbon and its components in different winter cropping patterns were increased, and ROT and CRR treatments were more beneficial to the accumulation of soil total organic carbon, active organic carbon and its components as well as the improvement of soil carbon pool management index, which should be preferred in the adjustment of cropping patterns.

Soil Research ◽  
2003 ◽  
Vol 41 (5) ◽  
pp. 889 ◽  
Author(s):  
T. A. Knowles ◽  
B. Singh

Soil carbon is an important component of the global carbon cycle with an estimated pool of soil organic carbon of about 1500 Gt. There are few estimates of the pool of inorganic carbon, but it is thought to be approximately 50% of the organic carbon pool. There is no detailed study on the estimation of the soil carbon pool for Australian soils.In order to quantify the carbon pools and to determine the extent of spatial variability in the organic and inorganic carbon pools, 120 soil cores were taken down to a depth of 0.90 m from a typical cotton field in northern NSW. Three cores were also taken from nearby virgin bushland and these samples were used as paired samples. Each soil core was separated into 4 samples, i.e. 0–0.15, 0.15–0.30, 0.30–0.60, and 0.60–0.90 m. Soil organic carbon was determined by wet oxidation and inorganic carbon content was determined using the difference between total carbon and organic carbon, and confirmed by the acid dissolution method. Total carbon was measured using a LECO CHN analyser. Soil organic carbon of the field constituted 62% (0–0.15 m), 58% (0.15–0.30 m), 60% (0.30–0.60 m), and 67% (0.60–0.90 m) of the total soil carbon. The proportion of inorganic carbon in total carbon is higher than the global average of 32%. Organic carbon content was relatively higher in the deeper layers (>0.30�m) of the studied soils (Vertosols) compared with other soil types of Australia. The carbon content varied across the field, however, there was little correlation between the soil types (grey, red, or intergrade colour) and carbon content. The total soil carbon pool of the studied field was estimated to be about 78 t/ha for 0–0.90 m layer, which was approximately 58% of the total soil carbon in the soil under nearby remnant bushland (136 t/ha). The total pool of carbon in the cotton soils of NSW was estimated to be 44.8 Mt C, where organic carbon and inorganic carbon constitute 34.9 Mt C and 9.9 Mt C, respectively. Based on the results of a limited number of paired sites under remnant vegetation, it was estimated that about 18.9 Mt of C has been lost from Vertosols by cotton cropping in NSW. With more sustainable management practices such as conservation tillage and green manuring, some of the lost carbon can be resequestered, which will help to mitigate the greenhouse effect, improve soil quality and may increase crop yield.


2013 ◽  
Vol 21 (10) ◽  
pp. 1202-1208
Author(s):  
Xiao-Ping XIAO ◽  
Hai-Ming TANG ◽  
Ze-Min NIE ◽  
Li-Jun GUO ◽  
Zheng-Peng LIU ◽  
...  

2020 ◽  
Vol 158 (1-2) ◽  
pp. 119-127
Author(s):  
Haiming Tang ◽  
Xiaoping Xiao ◽  
Chao Li ◽  
Xiaochen Pan ◽  
Kaikai Cheng ◽  
...  

AbstractChanges in soil bulk density (BD), soil organic carbon (SOC) content, SOC stocks and soil labile organic C fractions (mineralizable C (Cmin), microbial biomass C (MBC), dissolved organic C (DOC), particulate organic C (POC), light fraction organic C (LFOC) and permanganate oxidizable C (KMnO4-C)) were explored over 3 years in a double-cropping rice system of southern China. Five organic and inorganic nitrogen (N) inputs were used: (1) 100% from chemical fertilizer (M0), (2) 30% from organic manure, 70% from chemical fertilizer (M30), (3) 50% from organic manure, 50% from chemical fertilizer (M50), (4) 100% from organic manure (M100) and (5) without N fertilizer input, as control (CK). All organic manure treatments decreased BD significantly in the 0–20 cm soil layer compared with CK. The SOC content and stocks with organic manure were significantly higher than in M0 or CK; also, the cumulative amount of SOC stocks in M30 and M50 increased at the plough layer, compared with CK. The non-labile C content increased significantly and the percentage of labile C were significantly higher with organic manure application than in M0 or CK. The soil carbon management index (CMI) also increased significantly under the application of organic manure. Therefore, application of organic manure can increase the pool of stable C in surface layers, and increase content and percentage of labile C. Based on soil carbon storage and CMI, the combined application of 30 or 50% N of organic manure with chemical fertilizer improves carbon cycling services and soil quality in southern China paddy soil.


2020 ◽  
Author(s):  
Akudo Ogechukwu Onunwa ◽  
Ifeyinwa Monica Uzoh ◽  
Chukwuebuka Christopher Okolo ◽  
Charles Arinze Igwe ◽  
John Nwite

<p> </p><p>                                                                        <strong>ABSTRACT</strong></p><p>Maintenance of Soil Organic Matter (SOM) has been recognized as a strategy that could reduce soil degradation, improve soil organic carbon (SOC) pool thereby reducing atmospheric concentration of carbon iv oxide (CO<sub>2</sub>) so as to ameliorate the effect of carbon and other greenhouse gases on the environment. Soil fertility depletion in the humid tropics is a serious problem emanating from erosion and leaching due to intense rainfall. Decrease in soil fertility and productivity is believed to be due to depletion in SOM. This study aims at determining the relative contributions (RC) of the various aggregated soil carbon (C<sub>WSA</sub>) (which is a function of available organic matter in the soil) to Soil organic carbon pool. Soil samples were collected from an area of land (0.1125ha) planted to sole cowpea, sole maize and maize-cowpea intercrop in No till (NT) and conventionally tilled (CT) plots amended with poultry droppings (PD), pig waste (PW), cassava peels (CP) at 20t/ha each and a control in a split-split plot in Randomized Complete Block Design with three replicates. Cropping system was assigned to the main plots, tillage system was assigned to split plot while organic amendments and control was assigned to the split-split plot measuring 7.5m<sup>2</sup>. The same treatment was maintained for two planting seasons (2012 and 2013), with the residual taken in 2013. Soil samples were collected at 0-30cm at the end of each planting season and SOC of the whole soil and the aggregated  soil carbon (2mm, 2-1mm,1-0.5mm 0.5-0.25mm and < 0.25mm) were determined using Walkley  and Black method as described by Nelson and Sommers (1982). Data collected were subjected to Analysis of Variance (ANOVA) using Genstat release 7.22D. The result revealed that there is a trend of aggregate size fractions 1-0.25mm contributing more carbon to the SOC than aggregate size fractions >2-1mm irrespective of the cropping system, tillage method or organic amendments applied. The highest relative contribution of aggregated soil carbon to the SOC pool shifted from the micro-aggregates (<0.25mm) to the macro-aggregates (1.0-0.25mm) for as long as the organic amendments lasted but gradually returned to the micro-aggregates when the amendments were withdrawn. It is therefore recommended that organic amendments be use to improve the soil aggregation which goes a long way in improving soil carbon pool thereby ameliorating the effect of carbon and other green house gases on the environment.</p><p>Key Words: Soil Organic carbon pool, Soil Aggregated carbon, Relative Contribution, Macro and Micro Aggregates</p>


2021 ◽  
Author(s):  
TaiRui Liu ◽  
Daoli Peng ◽  
Zhijie Tan ◽  
Jinping Guo ◽  
Yunxiang Zhang

Abstract BackgroundForest soil carbon pool plays a vital role in the global carbon sequestration and carbon emission. Forest management can regulate the sequestration and output of forest soil carbon pool to a certain extent, but mechanism of forest density effects on soil carbon pool still needs to be further researched. MethodsWe established sample plots with density gradients in three-age stands of Larix principis-rupprechtii plantation and measured soil respiration (RS), soil organic carbon (SOC), soil dissolved organic carbon (DOC), and microbial biomass carbon (MBC), light fraction organic carbon (LFOC), and easily oxidizeable organic carbon (ROC). Results and ConclusionsThe results showed that, among the forest stands of three ages, RS, heterotrophic respiration (RH), MBC, LFOC, ROC of different stand density levels were significantly different. Moderate density promotes RS rate and RH rate and the sequestration of MBC and LFOC and inhibits ROC sequestration. With the increase of forest stand density, RS, RH, LFOC, and MBC first increased and then decreased, and ROC first decreased and then increased, the quadratic function could fit these changing trends. The RS, RH, and autotrophic respiration (RA) rates of older forest stands were relatively fast, and contents of SOC, MBC, LFOC, DOC, and ROC were higher, and they were more sensitive to changes in stand density. SOC, LFOC, MBC, DOC, and ROC explained 56.05% variations of RS, Rh, and RA. MBC, LFOC, and ROC in soil labile organic carbon were closely related to RS and Rh, but not SOC. Among them, LFOC and MBC played the role of "warehouse" and "tool" and significantly correlated with RS and Rh. ROC, as "raw material," had a significant negative correlation with RS and RH. When the RS and RH rate were fast, ROC maintained a dynamic and stable state of low soil content. Stand density could regulate RH by affecting soil labile organic carbon, an essential path for stand density to regulate soil respiration. Given soil carbon pool significance in forest ecosystems, Continuous research on soil respiration and stand density is suggested to bridge the gaps in our comprehension of the Regulation of Forest Management on forest soil carbon pool.


2020 ◽  
Author(s):  
Lianlian Zhu ◽  
Zhengmiao Deng ◽  
Yonghong Xie ◽  
Xu Li ◽  
Feng Li ◽  
...  

Abstract. Litter decomposition plays a vital role in wetland carbon cycling. However, the contribution of aboveground litter decomposition to the wetland soil organic carbon (SOC) pool has not yet been quantified. Here, we conducted a Carex brevicuspis leaf litter input experiment to clarify the intrinsic factors controlling litter decomposition and quantify it's contribution to SOC pool at different water levels. This species is ubiquitous to global freshwater wetlands. We sampled this plant leaf litter at −25, 0, and +25 cm relative to the soil surface over 280 days and analysed leaf litter decomposition and its contribution to the SOC pool. The mass loss and carbon release rates were the highest at +25 cm water level, followed by the 0 cm water level. The rates of these parameters were the lowest at −25 cm water level. Significant amounts of litter carbon, nitrogen, and phosphorus were released at all three water levels. Litter input significantly increased the soil microbial biomass and fungal density but had nonsignificant impacts on soil bacteria, actinomycetes, and fungal/bacterial concentrations at all three water levels. Compared with litter removal, litter application increased the SOC by 25.12 %, 9.58 %, and 4.98 % at the +25 cm, 0 cm, and −25 cm water levels, respectively. Hence, higher water levels facilitate the release of organic carbon from leaf litter into the soil via water leaching. In this way, they strengthen the soil carbon pool. At lower water levels, soil carbon is lost as the slower litter decomposition rate and active microbial (actinomycete) respiration. Our results revealed that the water level in natural wetlands influences litter decomposition mainly by leaching and microbial activity, by extension, affects wetland surface carbon pool.


2021 ◽  
Vol 62 (1) ◽  
pp. 126-138
Author(s):  
Vijo Thomas Kurien ◽  
Elvin Thomas ◽  
S. Prasanth Narayanan ◽  
A. P. Thomas

2021 ◽  
Vol 13 (12) ◽  
pp. 2265
Author(s):  
Jonathan Sanderman ◽  
Kathleen Savage ◽  
Shree Dangal ◽  
Gabriel Duran ◽  
Charlotte Rivard ◽  
...  

A major limitation to building credible soil carbon sequestration programs is the cost of measuring soil carbon change. Diffuse reflectance spectroscopy (DRS) is considered a viable low-cost alternative to traditional laboratory analysis of soil organic carbon (SOC). While numerous studies have shown that DRS can produce accurate and precise estimates of SOC across landscapes, whether DRS can detect subtle management induced changes in SOC at a given site has not been resolved. Here, we leverage archived soil samples from seven long-term research trials in the U.S. to test this question using mid infrared (MIR) spectroscopy coupled with the USDA-NRCS Kellogg Soil Survey Laboratory MIR spectral library. Overall, MIR-based estimates of SOC%, with samples scanned on a secondary instrument, were excellent with the root mean square error ranging from 0.10 to 0.33% across the seven sites. In all but two instances, the same statistically significant (p < 0.10) management effect was found using both the lab-based SOC% and MIR estimated SOC% data. Despite some additional uncertainty, primarily in the form of bias, these results suggest that large existing MIR spectral libraries can be operationalized in other laboratories for successful carbon monitoring.


Sign in / Sign up

Export Citation Format

Share Document