scholarly journals Genetics of flower colour in pink flowered “Rosea” and white flowers “Alba” in periwinkle Catharanthus roseus (L) G. Don

2021 ◽  
Vol 14 (3) ◽  
pp. 166-174
Author(s):  
Awad Hamza Abdelmageed ◽  
Mohamed Elkheir Abdelrahman ◽  
Hatil Hashim Alkamali

Genetics of flower Colour in winka Catharanthus roseus (L) G. Don were in vestigate by inheritance two types (strains) of plants with different flowers colour were used in this study,pink corolla, and strong violet-purple eye color, and strong pink stem, and dark green leaf lamina (P), and White corolla, and yellow and greenish eye, and strong pink stem, and yellow and green leaf lamina (W) as parents, to determine the number of genes involved. This study was conducted at Horticulture Administration, Ministry of Agriculture, Kassala State, Sudan during for three years the period: Jan 2016 to Oct. 2020. First the two parents were covered to ensure self-pollination. Reciprocal cross has been carried out between the two inbred parents. The study showed that a single pair of genes is probably involved in flower colour and that gene for pink corolla, and strong violet-purple eye color, and strong pink stem, and dark green leaf lamina (P) is incompletely dominant over that for White corolla, and yellow and greenish eye, and strong pink stem, and yellow and green leaf lamina (W). The reciprocal crosses gave the same results indicating no role of cytoplasmic genes in the inheritance of these colors.

Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1272-1272 ◽  
Author(s):  
T. E. Tidwell ◽  
C. L. Blomquist ◽  
S. Rooney-Latham ◽  
H. J. Scheck

Arugula (Eruca vesicaria subsp. sativa (Mill.) Thell. is a Cruciferous plant used for culinary purposes. From 2012 to 2013, a foliar disease seriously impacted the growth and quality of about 0.1 ha of hydroponically grown arugula at a Santa Barbara County nursery. Samples of affected arugula seedlings exhibited adaxial and abaxial symptoms of mottling with circular to oval, water soaked, dark green leaf spots, each 1 to 3 mm in diameter, and some of which coalesced. Conidia of an Alternaria sp. were observed on the foliage. Symptomatic leaf pieces were disinfested with 0.6% NaOCl, blotted dry, and plated on acidified potato dextrose agar (APDA). Cultures were incubated under near-UV lights for 24 h/day. Olivaceous-grey colonies of the same Alternaria species observed on the leaves grew after 7 days. After 21 days on carrot-piece agar (3), the fungus produced beakless conidia with longitudinal and constricted transverse septa that measured 30.0 to 69.0 × 12.5 to 20.0 μm and were borne singly or in short chains of 2 to 3 conidia. In addition, knots of dark, thick-walled micro-chlamydospores were produced by the hyphae. The fungus was identified morphologically as Alternaria japonica Yoshii (2), and the species confirmed by sequence analysis. A portion of the internal transcribed spacer (ITS) region of ribosomal DNA (rDNA) was amplified using ITS1 and ITS4 primers (4). The sequence (GenBank Accession No. KJ126846) was 100% identical to the ITS rDNA sequence of an isolate of A. japonica (KC584201) using a BLASTn query. A. japonica was also detected in seeds of the lot used to grow the affected arugula crop. Pathogenicity of a single isolate was tested by inoculating four 37-day-old plants each of arugula, cabbage (Brassica oleracea L. var. capitata), and broccoli (B. oleracea L. var. botrytis L.). Inoculum was obtained from 11-day-old cultures of the isolate grown at 24°C on half-strength APDA. Half of a 2.5 cm diameter agar plug containing hyphae and conidia was ground in 2 ml of sterilized water, and the volume of water increased to 45 ml. Leaves of four plants/host species were sprayed with 3.5 to 4.0 ml of inoculum. The inoculated plants and four control plants of each species treated similarly with sterilized water were immediately incubated in a dark dew chamber at 23°C. After 72 h in the dew chamber, inoculated plants of all three hosts produced similar symptoms of wilting, water soaking, and dark green leaf spotting as the original symptomatic field plants. Conidia formed in the leaf spots on both sides of inoculated leaves. A. japonica was re-isolated from all of the inoculated plants but from none of the symptomless control plants using the method previously described. Pathogenicity tests were repeated, with similar results. Although reported in Italy in 2013 (1), to our knowledge, this is the first report of A. japonica on arugula in the United States. References: (1) G. Gilardi et al. Acta Hort. 1005:569, 2013. (2) E. G. Simmons. Page 368 in: Alternaria, An Identification Manual. CBS Fungal Biodiversity Centre, Utrecht, 2007. (3) S. Werres et al. Z. Planzenkr. Pflanzensh. 108:113, 2001. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


2020 ◽  
Vol 27 (7) ◽  
pp. 1041-1051 ◽  
Author(s):  
Michael Spartalis ◽  
Eleftherios Spartalis ◽  
Antonios Athanasiou ◽  
Stavroula A. Paschou ◽  
Christos Kontogiannis ◽  
...  

Atherosclerotic disease is still one of the leading causes of mortality. Atherosclerosis is a complex progressive and systematic artery disease that involves the intima of the large and middle artery vessels. The inflammation has a key role in the pathophysiological process of the disease and the infiltration of the intima from monocytes, macrophages and T-lymphocytes combined with endothelial dysfunction and accumulated oxidized low-density lipoprotein (LDL) are the main findings of atherogenesis. The development of atherosclerosis involves multiple genetic and environmental factors. Although a large number of genes, genetic polymorphisms, and susceptible loci have been identified in chromosomal regions associated with atherosclerosis, it is the epigenetic process that regulates the chromosomal organization and genetic expression that plays a critical role in the pathogenesis of atherosclerosis. Despite the positive progress made in understanding the pathogenesis of atherosclerosis, the knowledge about the disease remains scarce.


2021 ◽  
Vol 22 (9) ◽  
pp. 4484
Author(s):  
Ewa Filip ◽  
Lidia Skuza

Horizontal gene transfer (HGT)- is defined as the acquisition of genetic material from another organism. However, recent findings indicate a possible role of HGT in the acquisition of traits with adaptive significance, suggesting that HGT is an important driving force in the evolution of eukaryotes as well as prokaryotes. It has been noted that, in eukaryotes, HGT is more prevalent than originally thought. Mitochondria and chloroplasts lost a large number of genes after their respective endosymbiotic events occurred. Even after this major content loss, organelle genomes still continue to lose their own genes. Many of these are subsequently acquired by intracellular gene transfer from the original plastid. The aim of our review was to elucidate the role of chloroplasts in the transfer of genes. This review also explores gene transfer involving mitochondrial and nuclear genomes, though recent studies indicate that chloroplast genomes are far more active in HGT as compared to these other two DNA-containing cellular compartments.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Xueying Yang ◽  
Fei Shao ◽  
Dong Guo ◽  
Wei Wang ◽  
Juhong Wang ◽  
...  

AbstractFTO removes the N6-methyladenosine (m6A) modification from genes and plays a critical role in cancer development. However, the mechanisms underlying the regulation of FTO and its subsequent impact on the regulation of the epitranscriptome remain to be further elucidated. Here, we demonstrate that FTO expression is downregulated and inversely correlated with poor survival of lung adenocarcinoma patients. Mechanistically, Wnt signaling induces the binding of EZH2 to β-catenin. This protein complex binds to the LEF/TCF-binding elements at the promoter region of FTO, where EZH2 enhances H3K27me3 and inhibits FTO expression. Downregulated FTO expression substantially enhances the m6A levels in the mRNAs of a large number of genes in critical pathways, particularly metabolic pathway genes, such as MYC. Enhanced m6A levels on MYC mRNA recruit YTHDF1 binding, which promotes MYC mRNA translation and a subsequent increase in glycolysis and proliferation of tumor cells and tumorigenesis. Our findings uncovered a critical mechanism of epitranscriptome regulation by Wnt/β-catenin-mediated FTO downregulation and underscored the role of m6A modifications of MYC mRNA in regulating tumor cell glycolysis and growth.


1967 ◽  
Vol 38 (1) ◽  
pp. 51-59 ◽  
Author(s):  
J. A. EDWARDSON ◽  
J. T. EAYRS

SUMMARY The role of the peripheral innervation of mammary tissue in the maintenance of lactation has been investigated by the procedure of selective thelectomy combined with denervation of the posterior thoracic nipples. When suckling is restricted to a single pair of nipples bilateral transection of the three adjacent nerves supplying a nipple arrests lactation completely; partial denervation is associated with a reduced level of lactational performance which is directly related to the concentration of the residual innervation. Increase in litter size is associated with an overall increase in milk-yield up to a limit beyond which the addition of further young to the litter is without effect. It is inferred that there is a quantitative relationship between the neural stimulus of suckling and the endocrine response of the hypothalamopituitary system.


2018 ◽  
Vol 18 (6) ◽  
pp. 538-557 ◽  
Author(s):  
Soraya Sajadimajd ◽  
Mozafar Khazaei

Oxidative stress due to imbalance between ROS production and detoxification plays a pivotal role in determining cell fate. In response to the excessive ROS, apoptotic signaling pathway is activated to promote normal cell death. However, through deregulation of biomolecules, high amount of ROS promotes carcinogenesis in cells with defective signaling factors. In this line, NRF2 appears to be as a master regulator, which protects cells from oxidative and electrophilic stress. Nrf2 is an intracellular transcription factor that regulates the expression of a number of genes to encode anti-oxidative enzymes, detoxifying factors, anti-apoptotic proteins and drug transporters. Under normal condition, Nrf2 is commonly degraded in cytoplasm by interaction with Keap1 inhibitor as an adaptor for ubiquitination factors. However, high amount of ROS activates tyrosine kinases to dissociate Nrf2: Keap1 complex, nuclear import of Nrf2 and coordinated activation of cytoprotective gene expression. Nevertheless, deregulation of Nrf2 and/or Keap1 due to mutation and activated upstream oncogenes is associated with nuclear accumulation and constitutive activation of Nrf2 to protect cells from apoptosis and induce proliferation, metastasis and chemoresistance. Owning to the interplay of ROS and Nrf2 signaling pathways with carcinogenesis, Nrf2 modulation seems to be important in the personalization of cancer therapy.


HortScience ◽  
2018 ◽  
Vol 53 (10) ◽  
pp. 1487-1493 ◽  
Author(s):  
Doina Clapa ◽  
Claudiu Bunea ◽  
Orsolya Borsai ◽  
Adela Pintea ◽  
Monica Hârța ◽  
...  

The current research was carried out to investigate the effects of iron source in the culture media for Vaccinium corymbosum L. ʻBluerayʼ, ʻDukeʼ, and ʻPatriotʼ cultivars grown on five different types of medium (Woody Plant Medium supplemented with 1.0 mg·L−1 zeatin and 0, 25, 50, 75, and 100 mg·L−1 Sequestrene 138). After 10 weeks of culture, seven physiological parameters were measured, such as the number and length of axillary shoots, rooting and acclimatization percentage, as well as chlorophyll (a, b, a/b) and carotenoid content of the leaves. Adding Sequestrene 138 to the culture media led to a slight decrease of the proliferation rate but increased the length of the shoots. The chlorophyll and carotenoid content in all of the three cultivars was considerably increased as the iron concentration of the media increased. The shoots developed on the Sequestrene 138–free medium were chlorotic and short, whereas at different concentrations of iron in the culture medium the shoots were dark green and vigorous, providing a greater acclimatization success than those grown in iron-free medium.


Sign in / Sign up

Export Citation Format

Share Document