scholarly journals Black phosphorus nanosheet-based new drug delivery system for the anticancer agents: A review

2021 ◽  
Vol 16 (2) ◽  
pp. 014-027
Author(s):  
Chaitanya A. Gulhane ◽  
Adarsh R. Durge ◽  
Jagdish V. Manwar ◽  
Ravindra L. Bakal

Cancer has been one among the main threats to the lives of citizenry for hundreds of years. Traditional drug therapy has certain defects such as poor targeting, easy degradation, high side effects, etc. Therefore, to enhance the treatment efficiency of anticancer agents, there is need of developing new drug delivery systems. Black phosphorus is a member of the 2D family, and it possess the potential to construct drug delivery system by virtue of its photothermal therapy, photodynamic therapy, and biodegradable properties. Due to their special structure BP are considered to be the best platform for drug delivery. They have shown large potential as near-infrared photothermal therapy agents and drug delivery for cancer therapy. The present review covered advances in BP- based drug delivery system along with its advantages and applications in cancer therapy.

2018 ◽  
Vol 115 (3) ◽  
pp. 501-506 ◽  
Author(s):  
Meng Qiu ◽  
Dou Wang ◽  
Weiyuan Liang ◽  
Liping Liu ◽  
Yin Zhang ◽  
...  

A biodegradable drug delivery system (DDS) is one the most promising therapeutic strategies for cancer therapy. Here, we propose a unique concept of light activation of black phosphorus (BP) at hydrogel nanostructures for cancer therapy. A photosensitizer converts light into heat that softens and melts drug-loaded hydrogel-based nanostructures. Drug release rates can be accurately controlled by light intensity, exposure duration, BP concentration, and hydrogel composition. Owing to sufficiently deep penetration of near-infrared (NIR) light through tissues, our BP-based system shows high therapeutic efficacy for treatment of s.c. cancers. Importantly, our drug delivery system is completely harmless and degradable in vivo. Together, our work proposes a unique concept for precision cancer therapy by external light excitation to release cancer drugs. If these findings are successfully translated into the clinic, millions of patients with cancer will benefit from our work.


2018 ◽  
Vol 6 (40) ◽  
pp. 6424-6430 ◽  
Author(s):  
Caixia Huang ◽  
Jing Zheng ◽  
Dandan Ma ◽  
Na Liu ◽  
Cong Zhu ◽  
...  

An new drug delivery system to utilize the photodynamic-induced hypoxia for synergistic cancer therapy is proposed in this paper.


2019 ◽  
Vol 7 (24) ◽  
pp. 3811-3825 ◽  
Author(s):  
Panchanathan Manivasagan ◽  
Seung Won Jun ◽  
Van Tu Nguyen ◽  
Nguyen Thanh Phong Truong ◽  
Giang Hoang ◽  
...  

FA–COS–TGA–GNRs–DOX have been successfully designed as a drug delivery system for chemo-photothermal combination therapy.


2018 ◽  
Vol 54 (47) ◽  
pp. 6060-6063 ◽  
Author(s):  
Shengyong Geng ◽  
Lie Wu ◽  
Haodong Cui ◽  
Wenyong Tan ◽  
Tianfeng Chen ◽  
...  

Black phosphorus quantum dots are incorporated into liposomal bilayers to produce a drug delivery system with excellent near-infrared (NIR) photothermal properties and drug release capability controlled by light.


2019 ◽  
Author(s):  
Jun Wang ◽  
Na Chen ◽  
Kai Liu ◽  
Yu Tu ◽  
Weitao Yang ◽  
...  

Abstract Background: Owing to the tunability of longitudinal surface plasmon resonance (LSPR), ease of synthesizing small size and excellent stability, AuNRs have been developed as photothermal agents for cancer therapy. However, PTT alone could not kill cancer cells completely due to the local heterogeneous distribution of heat in tumors, penetration depth of light, light scattering and absorption. In addition, the treatment systems based on AuNRs hold disadvantages of loading one antitumor drug or a low therapeutic efficiency. Therefore, the construction of the AuNRs theranostic system to achieve imaging-guided dual drug delivery and enhanced photothermal therapy for tumor still remains a great challenge.Methods: The AuNRs were prepared using a seedless method. A mesoporous silica shell layer was coated on the surface of the AuNRs by sol-gel method. Double anticancer drugs, DOX and Btz, were loaded into the AuNRs@MSN nanoparticles through physical absorption and covalent conjugation, respectively.Results: The release of DOX and Btz is found pH/thermal dual responsive in vitro. Compared with AuNRs@MSN, PDA-AuNRs@MSN exhibits an increased near-infrared (NIR) absorption at 808 nm and an enhanced photothermal effect. In contrast to chemotherapy or photothermal therapy alone, the integrated D/B-PDA-AuNRs@MSN nanoparticles show higher cell apoptosis and enhanced tumor treatment efficacy in vitro and in vivo.Conclusions: In this study, we designed a double-drug loading, enhanced chemo/photothermal therapy and pH/thermal responsive drug delivery system for photoacoustic (PA) imaging-guided tumor therapy. We believe that the multifunctional D/B-PDA-AuNRs@MSN theranostic probe could serve as an effective probe for the treatment of cancers.


2017 ◽  
Vol 5 (21) ◽  
pp. 3940-3944 ◽  
Author(s):  
Shrabani Barman ◽  
Joyjyoti Das ◽  
Sandipan Biswas ◽  
T. K. Maiti ◽  
N. D. Pradeep Singh

In spite of inventing several anticancer agents the clinical payoff still remains unsatisfactory because of their severe host toxicity due to their nonspecific biodistribution in the body.


Sign in / Sign up

Export Citation Format

Share Document