scholarly journals Analisa Erosivitas Lahan Pada DAS Batang Agam Dengan Menggunakan Model SWAT

2020 ◽  
Vol 16 (1) ◽  
pp. 11
Author(s):  
Irfan Gustio ◽  
Dwi Putri Jingga ◽  
Elvi Roza Syofyan ◽  
Chairul Muharis

Batang Agam River is a river that flows along Bukittinggi City, Agam Regency, Fifty Cities Regency, Tanah Datar Regency, Payakumbuh City and empties into the Batang Sinamar River. The Batang Agam River, which crosses the residential area, is mostly used for agriculture, fisheries, tourism, mining and other activities. Community activities in the area of the Batang Agam River have resulted in a decrease in the function of the river which is characterized by narrowing, silting and pollution of the river. In addition, it is influenced by the ever-changing river water discharge, land conditions and changes that occur in the river channel. In addition, the negative behavior of the community and all their activities around the river basin also triggers damage to the river. This research was conducted to determine the value of land erosivity towards changes in land use area in the Batang Agam watershed, in this study using land cover in 2010, 2014, and 2019 using the Soil and Water Assessment Tool (SWAT) model and manual calculations were carried out using the USLE method as ratio. The analysis consists of four processes, namely watershed delineation, formation of a Hydrologic Response Unit (HRU), formation of climatological data, and finally the simulation process. The results of the HRU analysis showed that the Batang Agam watershed became 7 sub-watersheds, the dominant HRU was primary forest. In the case of Batang Agam, it was found that the level of erosion hazard was in the light category and the erosion value decreased in each review year.

2020 ◽  
Vol 16 (1) ◽  
pp. 34
Author(s):  
Maryam Afifa ◽  
Afla Dina ◽  
Elvi Roza Syofyan ◽  
Wisafri -

Batang Arau is one of the rivers that flows in the city of Padang, the upstream part of the Batang Arau watershed starting from the Lubuk Paraku river which is in the northeast of Padang City, with a water catchment area of 2,504 hectares which is Dr. Muhammad Hatta, Nature Reserve Area Barisan I and Arau downstream. The Batang Arau watershed has decreased its primary forest area due to the large number of additional settlements. The increase in residential area resulted in the land that was previously not waterproof. The mainstay discharge always increases in the rainy season and decreases in the dry season. The mainstay discharge in the Batang Arau watershed is calculated using the Fj Mock method. The Batang Arau watershed also knows the mainstay discharge that occurred in 2010, 2012 and 2018 using the Soil and Water Assessment Tool (SWAT) model. The analysis was obtained from four processes, namely delineation of the watershed, the formation of the Hydrologic Response Unit (HRU), the formation of climatological data, and the simulation process. For the HRU analysis of the Batang Arau watershed, it was obtained 7 sub-watersheds, the dominant HRU, namely primary dryland forest, was 74.68%.


2021 ◽  
Vol 886 (1) ◽  
pp. 012097
Author(s):  
Wahyuni ◽  
Andang Suryana Soma ◽  
Usman Arsyad ◽  
Riska Sariyani ◽  
Baharuddin Mappangaja

Abstract Erosion and sedimentation are problems that often occur in watershed ecosystems. The SWAT model (Soil and Water Assessment Tool) can be used to determine the output of a watershed’s performance. Jenelata sub-watershed area is one of the largest sub-watersheds of the Jeneberang watershed with 22.800 ha. This study aims to determine the spatial distribution of the hydrologic response unit (HRU) and analyze the rate of erosion and sedimentation in the Jenelata sub-watershed. The results showed that most HRUs are in secondary dryland forests with 447 HRU (19.09%). The level of erosion in the very light category, namely 5.74 ton/ha/year (37.53%) and light 34.71 ton/ha/year (27.76%), was in the villages of Moncongloe, Tana Karaeng, Sicini, Paladindang, Towata, Parang Lampoa, Manuju, and Buakkang. Meanwhile, moderate erosion was 104.07 ton/ha/year (23.92%), high 289.65 ton/ha/year (9.59%), and very high 553.74 ton/ha/year (1.20%) located in the villages of Pattallikang, Mangempang, Bontomanai, Bissoloro, Rannaloe, Jenebatu, and Sapaya. The largest sedimentation is 133.18 ton/ha/year in sub-watershed17, located in Bissoloro and Rannaloe villages.


2020 ◽  
Vol 15 (2) ◽  
pp. 1
Author(s):  
Annisa Fitriana Definnas ◽  
Rozy Fairuzza Reyandal ◽  
Elvi Roza Syofyan ◽  
Wisafri -

Batang Kuranji is one of six rivers that flow in the city of Padang, and is the main source of water for residents of Padang City to meet the raw water which is then processed into clean water and the needs of Mt. Nago irrigation water. The increase in population causes the population to move to a higher area (green zone). Batang Kuranji watershed has experienced a reduction in the area of forest land due to changes in land use activities by the population movement. As a result, land that was not watertight at first became watertight, the mainstay discharge or expected discharge is always available, always increasing during the rainy season and decreasing during the dry season. This study was conducted to determine the extent of land use change in the Batang Kuranji watershed, also to determine the main discharge that occurred in 2009, 2011, and 2017 using the Soil and Water Assessment Tool (SWAT) model. The analysis consists of four processes, namely watershed delineation, formation of a Hydrologic Response Unit (HRU), formation of climatological data, and finally the simulation process. HRU analysis results obtained by Batang Kuranji watershed into 9 sub-watersheds, the dominant HRU is protection forest by 62%, soil type with depth (solum) level A and B, runoff coefficient of 0.3 and NS value obtained by 0.6. This shows that the SWAT model can predict the hydrological process in the upstream Batang Kuranji watershed. The most influential land use on surface runoff is land use for settlement.


2019 ◽  
Vol 11 (4) ◽  
pp. 992-1000
Author(s):  
Jirawat Supakosol ◽  
Kowit Boonrawd

Abstract The purpose of this study is to investigate the future runoff into the Nong Han Lake under the effects of climate change. The hydrological model Soil and Water Assessment Tool (SWAT) has been selected for this study. The calibration and validation were performed by comparing the simulated and observed runoff from gauging station KH90 for the period 2001–2003 and 2004–2005, respectively. Future climate projections were generated by Providing Regional Climates for Impacts Studies (PRECIS) under the A2 and B2 scenarios. The SWAT model yielded good results in comparison to the baseline; moreover, the results of the PRECIS model showed that both precipitations and temperatures increased. Consequently, the amount of runoff calculated by SWAT under the A2 and B2 scenarios was higher than that for the baseline. In addition, the amount of runoff calculated considering the A2 scenario was higher than that considering the B2 scenario, due to higher average annual precipitations in the former case. The methodology and results of this study constitute key information for stakeholders, especially for the development of effective water management systems in the lake, such as designing a rule curve to cope with any future incidents.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 860
Author(s):  
Nicu Constantin Tudose ◽  
Mirabela Marin ◽  
Sorin Cheval ◽  
Cezar Ungurean ◽  
Serban Octavian Davidescu ◽  
...  

This study aims to build and test the adaptability and reliability of the Soil and Water Assessment Tool hydrological model in a small mountain forested watershed. This ungauged watershed covers 184 km2 and supplies 90% of blue water for the Brașov metropolitan area, the second largest metropolitan area of Romania. After building a custom database at the forest management compartment level, the SWAT model was run. Further, using the SWAT-CUP software under the SUFI2 algorithm, we identified the most sensitive parameters required in the calibration and validation stage. Moreover, the sensitivity analysis revealed that the surface runoff is mainly influenced by soil, groundwater and vegetation condition parameters. The calibration was carried out for 2001‒2010, while the 1996‒1999 period was used for model validation. Both procedures have indicated satisfactory performance and a lower uncertainty of model results in replicating river discharge compared with observed discharge. This research demonstrates that the SWAT model can be applied in small ungauged watersheds after an appropriate parameterisation of its databases. Furthermore, this tool is appropriate to support decision-makers in conceiving sustainable watershed management. It also guides prioritising the most suitable measures to increase the river basin resilience and ensure the water demand under climate change.


2019 ◽  
Vol 35 (5) ◽  
pp. 723-731 ◽  
Author(s):  
Gurdeep Singh ◽  
Dharmendra Saraswat ◽  
Naresh Pai ◽  
Benjamin Hancock

Abstract. Standard practice of setting up Soil and Water Assessment Tool (SWAT) involves use of a single land use (LU) layer under the assumption that no change takes place in LU condition irrespective of the length of simulation period. This assumption leads to erroneous conclusions about efficacy of management practices in those watersheds where land use changes (LUCs) (e.g. agriculture to urban, forest to agriculture etc.) occur during the simulation period. To overcome this limitation, we have developed a user-friendly, web-based tool named LUU Checker that helps create a composite LU layer by integrating multiple years of LU layers available in watersheds of interest. The results show that the use of composite LU layer for hydrologic response unit (HRU) delineation in 2474-km2 L’Anguile River Watershed in Arkansas was able to capture changed LU at subbasin level by using LU data available in the year 1999 and 2006, respectively. The web-based tool is applicable for large size watersheds and is accessible to multiple users from anywhere in the world. Keywords: Land use, Web-based tool, SWAT, LUU Checker.


2013 ◽  
Vol 7 (3) ◽  
pp. 252-257

The subject of this article is the estimation of quantitative (hydrological) and qualitative parameters in the catchment of Ronnea (1800 Km2, located in south western Sweden) through the application of the Soil and Water Assessment Tool (SWAT). SWAT is a river basin model that was developed for the U.S.D.A. Agricultural Research Service, by the Blackland Research Center in Texas. The SWAT model is a widely known tool that has been used in several cases world-wide. It has the ability to predict the impact of land management practices on water, sediment and agricultural chemical yield in large complex watersheds. The present work investigates certain capabilities of the SWAT model which have not identified up to now. More in specific, the main targets of the work carried out are the following: • Identification of the existing hydrological and qualitative conditions • Preparation - Processing of data required to be used as input data of the model • Hydrological calibration - validation of the model, in 7 subbasins of the Catchment of Ronnea • Estimation and evaluation of the simulated qualitative parameters of the model All available data were offered by the relevant Institutes of Sweden, in the framework of the European program EUROHARP. The existing conditions in the catchment of Ronnea, are described in detail including topography, land uses, soil types, pollution sources, agricultural management practices, precipitation, temperature, wind speed, humidity, solar radiation as well as observed discharges and Nitrogen and Phosphorus substances concentrations. Most of the above data were used as input data for the application of SWAT model. Adequate methods were also used to complete missing values in time series and estimate additional parameters (such as soil parameters) required by the model. Hydrological calibration and validation took place for each outlet of the 7 subbasins of Ronnea catchment in an annual, monthly and daily step. The calibration was achieved by estimating parameters related to ground water movement and evaluating convergence between simulated and observed discharges by using mainly the Nash & Sutcliffe coefficient (NTD). Through the sensitivity analysis, main parameters of the hydrological simulation, were detected. According to the outputs of the SWAT model, the water balance of Ronnea catchment was also estimated. Hydrological calibration and validation is generally considered sufficient in an annual and monthly step. Hydrological calibration – validation in daily step, generally does not lead to high values of the NTD indicator. However, when compared to results obtained by the use of SWAT in Greece, a relatively high value of NTD is achieved in one subbasin. Finally, a comparison between the simulated and observed concentrations of total Phosphorus and Nitrogen was carried out.


2009 ◽  
Vol 21 ◽  
pp. 49-55 ◽  
Author(s):  
Q. D. Lam ◽  
B. Schmalz ◽  
N. Fohrer

Abstract. The aims of this study are to identify the capacities of applying an ecohydrological model for simulating flow and to assess the impact of point and non-point source pollution on nitrate loads in a complex lowland catchment, which has special hydrological characteristics in comparison with those of other catchments. The study area Kielstau catchment has a size of approximately 50 km2 and is located in the North German lowlands. The water quality is not only influenced by the predominating agricultural land use in the catchment as cropland and pasture, but also by six municipal wastewater treatment plants. Ecohydrological models like the SWAT model (Soil and Water Assessment Tool) are useful tools for simulating nutrient loads in river catchments. Diffuse entries from the agriculture resulting from fertilizers as well as punctual entries from the wastewater treatment plants are implemented in the model set-up. The results of this study show good agreement between simulated and measured daily discharges with a Nash-Sutcliffe efficiency and a correlation coefficient of 0.76 and 0.88 for the calibration period (November 1998 to October 2004); 0.75 and 0.92 for the validation period (November 2004 to December 2007). The model efficiency for daily nitrate loads is 0.64 and 0.5 for the calibration period (June 2005 to May 2007) and the validation period (June 2007 to December 2007), respectively. The study revealed that SWAT performed satisfactorily in simulating daily flow and nitrate loads at the lowland catchment in Northern Germany.


2018 ◽  
Vol 49 (3) ◽  
pp. 908-923 ◽  
Author(s):  
Richarde Marques da Silva ◽  
José Carlos Dantas ◽  
Joyce de Araújo Beltrão ◽  
Celso A. G. Santos

Abstract A Soil and Water Assessment Tool (SWAT) model was used to model streamflow in a tropical humid basin in the Cerrado biome, southeastern Brazil. This study was undertaken in the Upper São Francisco River basin, because this basin requires effective management of water resources in drought and high-flow periods. The SWAT model was calibrated for the period of 1978–1998 and validated for 1999–2007. To assess the model calibration and uncertainty, four indices were used: (a) coefficient of determination (R2); (b) Nash–Sutcliffe efficiency (NS); (c) p-factor, the percentage of data bracketed by the 95% prediction uncertainty (95PPU); and (d) r-factor, the ratio of average thickness of the 95PPU band to the standard deviation of the corresponding measured variable. In this paper, average monthly streamflow from three gauges (Porto das Andorinhas, Pari and Ponte da Taquara) were used. The results indicated that the R2 values were 0.73, 0.80 and 0.76 and that the NS values were 0.68, 0.79 and 0.73, respectively, during the calibration. The validation also indicated an acceptable performance with R2 = 0.80, 0.76, 0.60 and NS = 0.61, 0.64 and 0.58, respectively. This study demonstrates that the SWAT model provides a satisfactory tool to assess basin streamflow and management in Brazil.


2021 ◽  
Vol 31 (4) ◽  
pp. 696-710
Author(s):  
Liupeng Jiang ◽  
Jinghai Zhu ◽  
Wei Chen ◽  
Yuanman Hu ◽  
Jing Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document