LEVERAGING PROBABILISTIC MULTIVARIATE CLUSTERING ANALYSES OF WELL LOGS TO IDENTIFY “SWEET SPOT” INTERVALS IN HETEROGENEOUS CONVENTIONAL AND UNCONVENTIONAL RESERVOIRS

2019 ◽  
Author(s):  
Eric Eslinger ◽  
Francis Boyle ◽  
Alan Curtis
2021 ◽  
Author(s):  
Syamil Mohd Razak ◽  
Jodel Cornelio ◽  
Atefeh Jahandideh ◽  
Behnam Jafarpour ◽  
Young Cho ◽  
...  

Abstract The physics of fluid flow and transport processes in hydraulically fractured unconventional reservoirs are not well understood. As a result, the predicted production behavior using conventional simulation often does not agree with the observed field performance data. The discrepancy is caused by potential errors in the simulation model and the physical processes that take place in complex fractured rocks subjected to hydraulic fracturing. Additionally, other field data such as well logs and drilling parameters containing important information about reservoir condition and reservoir characteristics are not conveniently integrated into existing simulation models. In this paper, we discuss the development of a deep learning model to learn the errors in simulation-based performance prediction in unconventional reservoirs. Once trained, the model is expected to forecast the performance response of a well by augmenting physics-based predictions with the learned prediction errors from the deep learning model. To learn the discrepancy between simulated and observed production data, a simulation dataset is generated by using formation, completion, and fluid properties as input to an imperfect physics-based simulation model. The difference between the resulting simulated responses and observed field data, together with collected field data (i.e. well logs, drilling parameters), is then used to train a deep learning model to learn the prediction errors of the imperfect physical model. Deep convolutional autoencoder architectures are used to map the simulated and observed production responses into a low-dimensional manifold, where a regression model is trained to learn the mapping between collected field data and the simulated data in the latent space. The proposed method leverages deep learning models to account for prediction errors originating from potentially missing physical phenomena, simulation inputs, and reservoir description. We illustrate our approach using a case study from the Bakken Play in North Dakota.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Mohammad O. Eshkalak ◽  
Shahab D. Mohaghegh ◽  
Soodabeh Esmaili

Production from unconventional reservoirs has gained an increased attention among operators in North America during past years and is believed to secure the energy demand for next decades. Economic production from unconventional reservoirs is mainly attributed to realizing the complexities and key fundamentals of reservoir formation properties. Geomechanical well logs (including well logs such as total minimum horizontal stress, Poisson’s ratio, and Young, shear, and bulk modulus) are secured source to obtain these substantial shale rock properties. However, running these geomechanical well logs for the entire asset is not a common practice that is associated with the cost of obtaining these well logs. In this study, synthetic geomechanical well logs for a Marcellus shale asset located in southern Pennsylvania are generated using data-driven modeling. Full-field geomechanical distributions (map and volumes) of this asset for five geomechanical properties are also created using general geostatistical methods coupled with data-driven modeling. The results showed that synthetic geomechanical well logs and real field logs fall into each other when the input dataset has not seen the real field well logs. Geomechanical distributions of the Marcellus shale improved significantly when full-field data is incorporated in the geostatistical calculations.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5978
Author(s):  
Norbert P. Szabó ◽  
Rafael Valadez-Vergara ◽  
Sabuhi Tapdigli ◽  
Aja Ugochukwu ◽  
István Szabó ◽  
...  

Several approaches have been applied for the evaluation of formation organic content. For further developments in the interpretation of organic richness, this research proposes a multivariate statistical method for exploring the interdependencies between the well logs and model parameters. A factor analysis-based approach is presented for the quantitative determination of total organic content of shale formations. Uncorrelated factors are extracted from well logging data using Jöreskog’s algorithm, and then the factor logs are correlated with estimated petrophysical properties. Whereas the first factor holds information on the amount of shaliness, the second is identified as an organic factor. The estimation method is applied both to synthetic and real datasets from different reservoir types and geologic basins, i.e., Derecske Trough in East Hungary (tight gas); Kingak formation in North Slope Alaska, United States of America (shale gas); and shale source rock formations in the Norwegian continental shelf. The estimated total organic content logs are verified by core data and/or results from other indirect estimation methods such as interval inversion, artificial neural networks and cluster analysis. The presented statistical method used for the interpretation of wireline logs offers an effective tool for the evaluation of organic matter content in unconventional reservoirs.


Sign in / Sign up

Export Citation Format

Share Document