The Influence of Shear Strain on the Torsion Capacity of Hybrid Beams

2020 ◽  
Vol 38 (7A) ◽  
pp. 951-959
Author(s):  
Alyaa H. Mohammed ◽  
Kaiss F. Sarsam ◽  
Qais A. Hasan

This research discusses experimentally the shear strain of the reinforcement concrete hybrid beams composed of reactive powder concrete (RPC) at the peripheral and conventional concrete (CC) at the core beams under torsional strength tests. Shear strain is usually represented by (), which is explained as the tangent of the angle and is be like the length of deformation at its maximum divided by the length of perpendicular in the plane of the force application. Twelve reinforced concrete beams are tested having the following dimensions: 100, 200 and 1500mm as width, height and length respectively with thickness of the RPC concrete were 40 and 20mm. The beams were cast and tested to failure in torsion by using two opposite cantilevers steel arms that contribute to transferring the torque to the centre of the beams. Two control (CC and RPC) beams were poured, and the ten other beams were all poured as hybrid ones. Experimental data of the three strain gauges locations in the middle of the beams in one of the side surface face, to calculate shear strain (). The percentage of shear strain at ultimate torsion capacity was reduced by about 76% for RPC (RP) to CC (NC) beams and 63% for hybrid beam (H1) to CC (NC) beam.

2018 ◽  
Vol 25 (3) ◽  
pp. 30-39
Author(s):  
Husain Khalaf Jarallah ◽  
Nidaa Qassim Jassim

In this investigation the effect of large web opening on the on the behaver of beams made by normal concrete (NC) and reactive powder concrete (RPC) have been studied. The experimental work consists of casting and testing in flexure 12 rectangular simply supported reinforced concrete beams. The main parameters of this test are opening locations and normal concrete and RPC location with is the section. The ultimate loads, cracking loads, load -deflection behavior, skew of the openings (deflection at the two opposite corners of openings) and ductility were discussed. These results showed that increase ultimate loads (Pu) and stiffness by increase RPC layers. The using RPC layers increase ultimate load about (1-30) %. Using RPC in compression fiber is found to be more effective than using RPC in tension fiber. The cracking load of hybrid beam with one layer of RPC in compression fiber (having one opening) higher than NC beams by 48.5%. The ultimate strength was decreases with increases opening about (4-21)%, thus indicating that the stiffness decreases accordingly. Hybrid beams with RPC in tension fiber failed with less crack than those for hybrid beams with RPC in compression fiber at the same number of openings. The skew at opening of flexural zone show greater values than the skew at opening in shear zone for each beam until failure. The increase in the number of openings leads to increase in the ductility because it reduces the strength of beams.


2020 ◽  
Vol 38 (5A) ◽  
pp. 669-680
Author(s):  
Ghazwan K. Mohammed ◽  
Kaiss F. Sarsam ◽  
Ikbal N. Gorgis

The study deals with the effect of using Slurry infiltrated fiber concrete (SIFCON) with the reinforced concrete beams to explore its enhancement to the flexural capacity. The experimental work consists of the casting of six beams, two beams were fully cast by conventional concrete (CC) and SIFCON, as references. While the remaining was made by contributing a layer of SIFCON diverse in-depth and position, towards complete the overall depths of the built-up beam with conventional concrete CC. Also, an investigation was done through the control specimens testing about the mechanical properties of SIFCON. The results showed a stiffer behavior with a significant increase in load-carrying capacity when SIFCON used in tension zones. Otherwise high ductility and energy dissipation appeared when SIFCON placed in compression zones with a slight increment in ultimate load. The high volumetric ratio of steel fibers enabled SIFCON to magnificent tensile properties.


2015 ◽  
Vol 121 ◽  
pp. 142-153 ◽  
Author(s):  
Denise Ferreira ◽  
Eva Oller ◽  
Cristina Barris ◽  
Lluis Torres

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4173 ◽  
Author(s):  
Zbigniew Perkowski ◽  
Mariusz Czabak ◽  
Stefania Grzeszczyk ◽  
Daniel Frączek ◽  
Karolina Tatara ◽  
...  

The article describes four-point bending tests of three reinforced concrete beams with identical cross-sections, spans, and high-ductility steel reinforcement systems. Two beams were strengthened in the compressed section with a thin layer of reactive powder concrete (RPC) bonded with evenly spaced stirrups. Their remaining sections, and the third reference beam, were made of ordinary concrete. Measurements of their deflections, strains and axis curvature; ultrasonic tests; and a photogrammetric analysis of the beams are the main results of the study. For one of the beams with the RPC, the load was increased in one stage. For the two remaining beams, the load was applied in four stages, increasing the maximum load from stage to stage in order to allow the analysis of the damage evolution before reaching the bending resistance. The most important effect observed was the stable behaviour of the strengthened beams in the post-critical state, as opposed to the reference beam, which had about two to three times less energy-absorbing capacity in this range. Moreover, thanks to the use of the RPC layer, the process of concrete cover delamination in the compression zone was significantly reduced, the high ductility of the rebars was fully utilized during the formation of plastic hinges, and the bending capacity was increased by approximately 12%.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5341
Author(s):  
Saruhan Kartal ◽  
Ilker Kalkan ◽  
Ahmet Beycioglu ◽  
Magdalena Dobiszewska

The present study pertains to the load-deflection behavior and cracking moments of concrete beams with hybrid FRP-steel reinforcement. Under and over-reinforced hybrid beams were tested for failure along with reference beams with only steel or FRP reinforcement. The first-cracking moments of the beams were estimated analytically by using different uncracked moments of the inertia and modulus of rupture definitions. The uncracked moment of inertia definitions include the gross and uncracked transformed moments. The adopted modulus definitions are comprised of the experimental values from tests on prisms and the analytical values from the equations in different concrete codes. Furthermore, analytical methods were developed for estimating the deflections of concrete beams with hybrid FRP-steel or only FRP reinforcement. Two different types of elastic moduli, namely the secant modulus corresponding to the extreme compression fiber strain and the ACI 318M-19 modulus, were used in deflection calculations. Closer estimates were obtained by using the secant modulus, particularly in hybrid-reinforced beams. In the post-yielding region of the steel tension reinforcement, the deflection estimates were established to lay in closer proximity to the experimental curve when obtained by adding up the deflection increments instead of directly calculating the total deflections from the elastic curve equation. Accurate estimation of the cracking moment was found to be vital for the close prediction of deflections.


2018 ◽  
Vol 7 (4) ◽  
pp. 2753
Author(s):  
Ibtihal Fadhil ◽  
Ayad K. Kadhem ◽  
Nisreen Salih

Reactive powder concrete is a new concrete that has been used in recent years because of many advantages. The use of reactive powder concrete in structural elements such as beams provides higher compressive strength, higher modulus of elasticity, durable concrete and increasing the concrete ductility, so that the concrete has high resistance against tensile stress. The experimental tests of the reinforced concrete beams under the effects of impact loadings are investigated in this paper. The parameters being adopted in present paper are steel fiber of (1, 1.5 and 2%) by volume, dropped mass and height of drop. The reinforced concrete specimens were tested under impact load by one strike only. The test results indicate that the impact force increased when the compressive strength of concrete increased that when the steel fiber ratio becomes more and the deflection has become less.  


2017 ◽  
Vol 57 ◽  
pp. 164-176 ◽  
Author(s):  
Raquel Martínez España ◽  
A.M. Hernández-Díaz ◽  
José M. Cecilia ◽  
Manuel D. García-Román

Sign in / Sign up

Export Citation Format

Share Document