INCREASE OF THE TEMPERATURE FORECAST ACCURACY ALONG THE WELLBORE WITH ACCOUNT OF THE PRODUCTS MOVEMENT AND DEGASSING SPECIFIC FEATURES

2020 ◽  
pp. 64-68
Author(s):  
V.Yu. Nikulin ◽  
◽  
Yu.V. Zeigman ◽  
2010 ◽  
Vol 138 (12) ◽  
pp. 4402-4415 ◽  
Author(s):  
Paul J. Roebber

Abstract Simulated evolution is used to generate consensus forecasts of next-day minimum temperature for a site in Ohio. The evolved forecast algorithm logic is interpretable in terms of physics that might be accounted for by experienced forecasters, but the logic of the individual algorithms that form the consensus is unique. As a result, evolved program consensus forecasts produce substantial increases in forecast accuracy relative to forecast benchmarks such as model output statistics (MOS) and those from the National Weather Service (NWS). The best consensus produces a mean absolute error (MAE) of 2.98°F on an independent test dataset, representing a 27% improvement relative to MOS. These results translate to potential annual cost savings for electricity production in the state of Ohio of the order of $2 million relative to the NWS forecasts. Perfect forecasts provide nearly $6 million in additional annual electricity production cost savings relative to the evolved program consensus. The frequency of outlier events (forecast busts) falls from 24% using NWS to 16% using the evolved program consensus. Information on when busts are most likely can be provided through a logistic regression equation with two variables: forecast wind speed and the deviation of the NWS minimum temperature forecast from persistence. A forecast of a bust is 4 times more likely to be correct than wrong, suggesting some utility in anticipating the most egregious forecast errors. Discussion concerning the probabilistic applications of evolved programs, the application of this technique to other forecast problems, and the relevance of these findings to the future role of human forecasting is provided.


2019 ◽  
Vol 34 (2) ◽  
pp. 481-482
Author(s):  
Brian J. Squitieri ◽  
William A. Gallus

Abstract An error was discovered in the code used to calculate neighborhood equitable threat scores (nETSs) in Squitieri and Gallus. Replicating results with the error corrected revealed that most of the conclusions from Squitieri and Gallus remained the same, but with one significant new finding and one notable change in results. In the original manuscript, very few correlations between MCS QPF skill and LLJ forecast accuracy could be denoted among weakly forced cases, with none of them being statistically significant. Applying the aforementioned correction, it was found that QPF skill during the mature stage of MCSs significantly correlated with moisture forecast accuracy within developing LLJs for weakly forced events. It was also found that correlations between MCS QPF skill and LLJ potential temperature forecast accuracy occurred earlier in the evening.


2008 ◽  
Vol 25 (11) ◽  
pp. 2106-2116 ◽  
Author(s):  
Wei Li ◽  
Yuanfu Xie ◽  
Zhongjie He ◽  
Guijun Han ◽  
Kexiu Liu ◽  
...  

Abstract Correlation scales have been used in the traditional scheme of three-dimensional variational data assimilation (3DVAR) to estimate the background (or first guess) error covariance matrix (the 𝗕 matrix in brief) for the numerical forecast and reanalysis of ocean for decades. However, it is challenging to implement this scheme. On the one hand, determining the correlation scales accurately can be difficult. On the other hand, the positive definite of the 𝗕 matrix cannot be guaranteed unless the correlation scales are sufficiently small. Xie et al. indicated that a traditional 3DVAR only corrects certain wavelength errors, and its accuracy depends on the accuracy of the 𝗕 matrix. Generally speaking, the shortwave error cannot be sufficiently corrected until the longwave error is corrected. An inaccurate 𝗕 matrix may mistake longwave errors as shortwave ones, resulting in erroneous analyses. A new 3DVAR data assimilation scheme, called a multigrid data assimilation scheme, is proposed in this paper for quickly minimizing longwave and shortwave errors successively. By assimilating the sea surface temperature and temperature profile observations into a numerical model of the China Seas, this scheme is applied to a retroactive real-time forecast experiment and favorable results are obtained. Compared to the traditional scheme of 3DVAR, this new scheme has higher forecast accuracy and lower root-mean-square errors. Note that the new scheme demonstrates greatly improved numerical efficiency in the analysis procedure.


Author(s):  
FARHANA AKTER BINA

Climate is a paradigm of a complex system and its changes are global in nature. It is an exciting challenge to predict these changes over the period of different time scales. Time series analysis is one of the most important and major tools to analyze the climate time series data. Temperature is one of the most important climatic parameter. In this research, our main aim is to conduct a study across the country to forecast temperature through a relatively new method of forecasting approach named as sliced functional time series (SFTS). The monthly forecasts were obtained along with prediction intervals. These forecasts were compared with the forecasts obtained from autoregressive integrated moving average (ARIMA) and exponential smoothing state-space (ETS) models based on the accuracy measures and the length of prediction intervals to evaluate the performance of SFTS approach. Keywords: Climate,Functional Time Series,Sliced Functional Time Series, Temperature, Forecast, Forecast Accuracy


2020 ◽  
Vol 5 (1) ◽  
pp. 374
Author(s):  
Pauline Jin Wee Mah ◽  
Nur Nadhirah Nanyan

The main purpose of this study is to compare the performances of univariate and bivariate models on four time series variables of the crude palm oil industry in Peninsular Malaysia. The monthly data for the four variables, which are the crude palm oil production, price, import and export, were obtained from Malaysian Palm Oil Board (MPOB) and Malaysian Palm Oil Council (MPOC). In the first part of this study, univariate time series models, namely, the autoregressive integrated moving average (ARIMA), fractionally integrated autoregressive moving average (ARFIMA) and autoregressive autoregressive (ARAR) algorithm were used for modelling and forecasting purposes. Subsequently, the dependence between any two of the four variables were checked using the residuals’ sample cross correlation functions before modelling the bivariate time series. In order to model the bivariate time series and make prediction, the transfer function models were used. The forecast accuracy criteria used to evaluate the performances of the models were the mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE). The results of the univariate time series showed that the best model for predicting the production was ARIMA  while the ARAR algorithm were the best forecast models for predicting both the import and export of crude palm oil. However, ARIMA  appeared to be the best forecast model for price based on the MAE and MAPE values while ARFIMA  emerged the best model based on the RMSE value.  When considering bivariate time series models, the production was dependent on import while the export was dependent on either price or import. The results showed that the bivariate models had better performance compared to the univariate models for production and export of crude palm oil based on the forecast accuracy criteria used.


CFA Digest ◽  
2010 ◽  
Vol 40 (1) ◽  
pp. 74-76
Author(s):  
Stephen Phillip Huffman
Keyword(s):  

2020 ◽  
Vol 4 ◽  
pp. 96-109
Author(s):  
A.V. Romanov ◽  
◽  
M.V. Yachmenova ◽  

Based on the example of flood warning data provided by EFAS for the territory of Northwestern Administration for Hydrometeorology and Environmental Monitoring in 2018-2020, the structure of the systematized issues of the EFAS portal is analyzed. The issues determine a feedback for the year-round monitoring of the accuracy of flood forecasting using the LISFLOOD base model, as well as its calibration. Several most important feedback sections are highlighted, that allow improving significantly a procedure for the quantitative and qualitative differentiated assessment of short- and medium-range flood forecasts. Using the results of the numerical analysis, a general description of the EFAS flood warning system quality and the prospects for the participation of the Russian Federation in it are given. Keywords: flooding, hydrological forecasts, forecast lead time, feedback, forecast accuracy


Sign in / Sign up

Export Citation Format

Share Document