scholarly journals Laboratory research of geomechanical parameters of sedimentary rocks massifs in the South Sakhalin

2017 ◽  
Vol 1 (1) ◽  
pp. 30-36 ◽  
Author(s):  
P.A. Kamenev ◽  
◽  
O.M. Usoltseva ◽  
P.A. Tsoi ◽  
V.N. Semenov ◽  
...  
1980 ◽  
Vol 17 (11) ◽  
pp. 1454-1461 ◽  
Author(s):  
Rolf W. Mathewes ◽  
John A. Westgate

Ash-grade Bridge River tephra, identified as such on the basis of shard habit, modal mineralogy, and composition of ilmenite, occurs in sedimentary cores from three lakes located to the south of the previously documented plume and necessitates a significant enlargement of the fallout area of that tephra in southwestern British Columbia.These new, more southerly occurrences are probably equivalent to the ~2350 year old Bridge River tephra, although it can be argued from the evidence at hand that the 14C dates and biotite-rich nature support relationship to a slightly earlier Bridge River event.Large differences exist in the 14C age of sediments immediately adjacent to the Bridge River tephra at these three lake sites; maximum ages of 3950 ± 170 years BP (GX-5549) and 3750 ± 210 years BP (I-10041) were obtained at Phair and Fishblue lakes, respectively, whereas the corresponding age at Horseshoe Lake is only 2685 ± 180 years BP (GX-5757). The two older dates are considered to be significantly affected by old carbon contamination for the bedrock locally consists of calcareous sedimentary rocks and the lacustrine sediments are very calcareous. The 14C date from Horseshoe Lake, which occurs in an area of igneous rocks, appears to be only slightly too old relative to the ~2350 year old Bridge River tephra.Well-dated tephra beds, therefore, can be very useful in assessing the magnitude of old carbon errors associated with radiocarbon dates based on limnic sediments. Calcareous gyttja deposits beneath Bridge River tephra within the study area exhibit old carbon errors of the order of 1350–1550 years.


2017 ◽  
Vol 72 (1) ◽  
pp. 63-74
Author(s):  
T. A. Kiryukhina ◽  
S. I. Bordunov ◽  
A. A. Solov’eva

2018 ◽  
Vol 47 (1) ◽  
pp. 23-36
Author(s):  
Boris Valchev ◽  
Dimitar Sachkov ◽  
Sava Juranov

The Paleogene sedimentary rocks in the north-easternmost part of the territory of Bulgaria have been penetrated by numerous boreholes. In terms of regional tectonic zonation, the study area is a part of the onshore sector of the Moesian Platform, which partly includes the South Dobrogea Unit and the easternmost part of the North Bulgarian Dome with its eastern slope. The lithostratigraphy of the Paleogene successions consists of six formal units (the Komarevo, Beloslav, Dikilitash, Aladan, Avren, and Ruslar formations) and one informal unit (glauconitic marker). For compiling an overall conception of the regional aspects (lithology, thickness, spatial distribution, and relationships) of the individual lithostratigraphic units and for illustration of their spatial distribution, a 3D lithostratigraphic model based on reinterpretation of individual borehole sections has been created. The model database was compiled by integration of the original lithological data from 338 borehole sections.


1869 ◽  
Vol 6 (64) ◽  
pp. 442-446
Author(s):  
G. A. Lebour

Geology.—Stated roughly, the geology of the Department of Finistère may be said to consist of two masses of granite, one to the north and one to the south, enclosing between them nearly the whole of the sedimentary rocks of the district. These consist of Cambrian slates and gneiss, Lower, Middle, and Upper Silurian slates and grits, and very small and unimportant patches of Upper Carboniferous shales. The entire mass of these deposits has an east and west direction, and occupies the central part of the Department.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
M. V. Rodkin ◽  
I. N. Tikhonov

Seismic process is usually considered as an example of occurrence of the regime of self-organizing criticality (SOC). A model of seismic regime as an assemblage of randomly developing episodes of avalanche-like relaxation, occurring at a set of metastable subsystems, can be the alternative of such consideration. The model is defined by two parameters characterizing the scaling hierarchical structure of the geophysical medium and the degree of metastability of subsystems of this medium. In the assemblage, these two parameters define a modelb-value. An advantage of such approach consists in a clear physical sense of parameters of the model. The application of the model for parameterization of the seismic regime of the south part of Sakhalin Island is considered. The models of space changeability of the scaling parameter and of temporal changeability of the parameter of metastability are constructed. The anomalous increase of the parameter of metastability was found in connection with the Gornozavodsk and Nevelsk earthquakes. At the present time, high values of this parameter occur in the area of the Poyasok Isthmus. This finding is examined in comparison with other indications of an increase in probability of occurrence of a strong earthquake in the South Sakhalin region.


2016 ◽  
Vol 53 (11) ◽  
pp. 1279-1311 ◽  
Author(s):  
A.M. Celâl Şengör

The Albula Pass region lies between the Lower Austroalpine Err Nappe and the Middle Austroalpine Silvretta Nappe. They will be treated here as the frame of the non- to gently metamorphic sedimentary units between the two during the Alpide times. Sedimentation started on a metamorphic Hercynian basement during the latest Carboniferous(?) and continued into the Permian. Then a sequence from the Alpine Buntsandstein to the medial Jurassic to early Cretaceous Aptychenkalk (=Maiolica) and radiolarites were deposited in an environment of rifting and subsidence. The succeeding Palombini clastics were laid down after the Aptychenkalk and mark the onset of shortening in the Alpine realm. The initial structures that formed were at least two north-dipping normal faults which formed before the deposition of the Jurassic sedimentary rocks. When shortening set in, the first structure that came into being was the south-vergent Elalbula Nappe, bending the normal faults into close antiforms. It became further dismembered into two pieces creating parts of the future Ela and Albula nappes in the Albula region. This motion was later reversed, when the entire ensemble became bulldozed by the immense body of the Silvretta Nappe along numerous, closely spaced thrust faults, some of which only very locally followed horizontal bits of the old normal faults, but in principle they determined their own course. No evidence for westerly motion could be identified, although microstructures in the structural fabric were not studied. The reason for this may be the pre-orogenic fabric in the bounding tectonic units.


Sign in / Sign up

Export Citation Format

Share Document