scholarly journals A Review on Water Flow Behavior of Howrah River Using Computational Fluid Dynamics

2021 ◽  
Vol 10 (1) ◽  
pp. 3-3
Author(s):  
Payal Gouda ◽  
Bibhab Kumar Lodh ◽  
Umesh Mishra
Fluids ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 103
Author(s):  
Giancarlo Comes ◽  
Carlo Cravero

The present work is focused on the study of an innovative fluidic device. It consists of a two-ways diverter valve able to elaborate an inlet water flow and divert it through one of the two outlets without moving parts but as a result of a fluctuation of pressure induced by two actuation ports, or channels. Such apparatus is named Attachment Bi-Stable Diverter (ABD) and is able to work with the effect of the fluid adhesion to a convex wall adjacent to it, this phenomenon is known as Coanda Effect; it generates the force responsible for the fluid attachment and the consequent deviation. The main purpose of this work is to develop a knowhow for the design and development of such particular device. A mathematical model for the ABD has been developed and used to find the relationships between the geometrical parameters and the operative conditions. A configuration has been designed, simulated with a computational fluid dynamics approach. A prototype has been printed with and additive manufacturing printer and tested in laboratory to check the effective working point of the device.


Author(s):  
Qiang Pan ◽  
Weidong Shi ◽  
Desheng Zhang ◽  
BPM van Esch ◽  
Ruijie Zhao

With environmental awareness growing in many countries, governments are taking measures to reduce mortality of migrating fish in pumping stations. Manufacturers seek to develop pumps that are less damaging to fish and still provide good hydraulic performance, but little is known about the implications design modifications may have on internal flow characteristics and overall hydraulic performance. In this paper, an integrated design method is proposed that combines a validated blade strike model for fish damage and a computational fluid dynamics method to assess the pump performance. A redesign of an existing, conventional, axial flow pump is presented as an example in this paper. It shows how the design of the impeller blades was modified stepwise in order to reduce fish mortality while its hydraulic performance was monitored. Computational fluid dynamics analysis of the flow near the hub of the highly skewed blades indicated that unconventional design modifications were required to ensure optimum flow behavior. In the final fish-friendly design, the risk of fish mortality has reduced considerably while the hydraulic performance of the pump is still acceptable for practical application.


ASAIO Journal ◽  
2002 ◽  
Vol 48 (2) ◽  
pp. 153
Author(s):  
N. Katagiri ◽  
A. Funakubo ◽  
Y. Taenaka ◽  
E. Tatsumi ◽  
T. Nishinaka ◽  
...  

Author(s):  
Xiuqin Cao ◽  
Kun Jiang ◽  
Hao Ding ◽  
Ping Yang ◽  
Zhendong Zhao ◽  
...  

AbstractBecause of the complexity of flow and the opacity of sludge, usually we can’t gain a precise and comprehensive sight of sludge flow type and its associated flow characteristics in the anaerobic digestion (AD) reactor. In the present study, we focused on the sludge rheological properties as well as the flow behavior in the digester. The viscosity decreased with the increase of shear rate, and sludge as a kind of pseudo-plastic fluid was proved. Based on computational fluid dynamics (CFD), taking sludge rheological index and rotational speed into consideration, then the flow field distribution in the digester was obtained. The fluid velocity raised with increase in rotational speed, moreover, fluid near blades had higher velocity while it was almost stagnant in the areas near reactor bottom and top as well as reactor wall and stirring shaft. The effect of rheological index on improving the velocity of fluid farther from impeller exceeded the influence on fluid at the impeller installation height. Regarding dead zone fraction as an indicator of the mixing effect, it was recommended that the suitable rotational speed for AD of 96 % moisture content sludge is 40 r/min. Finally, the reactor performance was optimized respectively from impeller form and reactor configuration, the results showed that both combined impellers and oval reactor can reduce dead zone volumes and produce a better mixing effect.


Author(s):  
Srinivas Swaroop Kolla ◽  
Ram S. Mohan ◽  
Ovadia Shoham

The Gas-Liquid Cylindrical Cyclone (GLCC©1) is a simple, compact and low-cost separator, which provides an economically attractive alternative to conventional gravity based separators over a wide range of applications. More than 6,500 GLCC©’s have been installed in the field to date around the world over the past 2 decades. The GLCC© inlet section design is a key parameter, which is crucial for its performance and proper operation. The flow behavior in the GLCC© body is highly dependent on the fluid velocities generated at the reduced area nozzle inlet. An earlier study (Kolla et al. [4]) recommended design modifications to the inlet section, based on safety and structural robustness. It is important to ensure that these proposed configuration modifications do not adversely affect the flow behavior at the inlet and the overall performance of the GLCC©. This study is carried out for a specific GLCC© field application, separating light oil, steam flooded wells in Minas, Indonesia. Computational Fluid Dynamics (CFD) software is used to analyze the hydrodynamics of flow with the proposed modifications of the inlet section for GLCC© field applications.


2021 ◽  
Author(s):  
Farasdaq Sajjad ◽  
Steven Chandra ◽  
Alvin Wirawan ◽  
Silvya Dewi Rahmawati ◽  
Michelle Santoso ◽  
...  

Abstract In the implementation of gas lift, understanding flow behavior in highly-deviated well is critical in avoiding production loss due to liquid fallback and blockage, even in highly-productive reservoir. In this work, we utilize Computational Fluid Dynamics (CFD) to optimize gas lift design under various flow behavior in highly-deviated well. The analysis is directly implemented into Arjuna offshore field case. Arjuna offshore field has gas-lifted wells, producing from a high-permeability reservoir. However, several wells suffer from huge production loss due to the effect of well's deviation. In deviated well, there exists frequent liquid fallback causes blockage, therefore, reducing the production. Motivated by this issue, we use CFD framework to perform gas lift optimization. We firstly adopt the geometry of gas-lifted wells as the computational domains for our simulation. An image-based meshing technique is deployed to capture the well's trajectory and internal geometry. We secondly utilize compressible Navier-Stokes equation and Finite Volume Method to evaluate the flow behavior. We capture the location of liquid fallback and liquid accumulation at elbows to estimate production loss. We consider the variation of viscosity, density, gas lift valve placement, injected gas rate, and reservoir pressure. We finally perform gradient-based optimization utilizing production loss as the objective function to obtain optimum design. The final result is then used to optimize the current design. The simulation results show that productivity index, pipe diameter, and deviation heavily influence the amount of production loss. At big pipe diameter and high deviation, the gravitational force governs the fluid flow. Therefore, slugs are developed and accumulated at elbows. This accumulation blocks gas flow and reduces production. Changing the gas injection rate affects the lifted density. High injection rate triggers segregation between the liquid and gas, while low injection rate does not reduce the liquid density. Shifting the gas lift valve placement influence the mixing between the liquid and gas. It also determines the cost of gas injection. Hence, we need to optimize both parameters at once. Six of thirty wells in Arjuna field experience severe liquid fallback, therefore, the production significantly decreases. The simulation shows up to 40% coverage of the pipe internal diameter, which blocks the gas flow. We perform the optimization by shifting the gas lift valve placement and adjusting the gas injection rate. By implementing the study result into the field case, we manage to improve the production by 20%. We provide an effective way to connect high-resolution simulation to the field design and revise the current concept in designing gas lift well completion. The simulation allows engineers to provide more insight on flow assurance in highly deviated wells.


Sign in / Sign up

Export Citation Format

Share Document