scholarly journals PENGARUH SUBTITUSI LUMPUR SIDOARJO (LUSI) TERHADAP KUAT TEKAN BATA BETON (PAVING BLOCK)

2020 ◽  
Vol 12 (2) ◽  
pp. 89
Author(s):  
Masbuhin Masbuhin

This study aims to determine the process of utilizing Sidoarjo Mud (LUSI) as a substitute for paving blocks and to determine the results of the compressive strength test of using LUSI as a substitute for paving blocks. The LUSI substitution is expected to be able to provide innovations in the construction of a paving block mixture. The research method used is the experimental method. The manufacture of test objects starts from the preparation stage, mix design, manufacture of test objects, testing and classifying paving blocks according to SNI 03-0691-1996. The sample of specimens used normal mix design and mix design substitute LUSI 40% of the fine aggregate value. Based on the results of research, paving blocks with a normal mix design of 1Pc: 2Ps are classified as quality A, 1Pc: 3Ps and 1Pc: 4Ps are classified as B quality, while for paving blocks substituting LUSI in a mixture of 1Pc: 2Ps is classified as quality B, for a mixture of 1Pc: 3Ps and 1Pc : 4Ps is classified as C quality. It can be concluded that the compressive strength of paving blocks has decreased in compressive strength after being substituted by LUSI, with a successive percentage value of 32%, 59% and 58%.

Jurnal CIVILA ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 213
Author(s):  
Asrul Majid ◽  
Hammam Rofiqi Agustapraja

Infrastructure development is one of the important aspects of the progress of a country where most of the constituents of infrastructure are concrete. The most important constituent of concrete is cement because its function is to bind other concrete materials so that it can form a hard mass. The large number of developments using cement as a building material will leave quite a lot of cement bags.In this study, the authors conducted research on the effect of adding cement waste to the compressive strength of concrete. This study used an experimental method with a total of 24 test objects. The test object is in the form of a concrete cylinder with a diameter of 15 cm and a height of 30 cm and uses variations in the composition of the addition of cement waste cement as a substitute for fine aggregate, namely 0%, 2%, 4% and 6%. K200). The compressive strength test was carried out at the age of 7 days and 28 days.The test results show that the use of waste as a partial substitute for fine aggregate results in a decrease in the compressive strength of each mixture. at the age of 7 days the variation of 2% is 16.84 MPa, 4% is 11.32 MPa and for a mixture of 6% is 6.68 MPa. Meanwhile, the compressive strength test value of 28 days old concrete in each mixture decreased by ± 6 MPa. So the conclusion is cement cement waste cannot be used as a substitute for fine aggregate in fc 16.6 (K200) quality concrete because the value is lower than the specified minimum of 16.6 MPa.


2018 ◽  
Vol 8 (2) ◽  
pp. 63-69
Author(s):  
Achendri M. Kurniawan ◽  
Devita Sulistiana

Blitar Regency is one of the strange culinary centers, among which are processed various foods from snail base ingredients, ranging from kripik, sate oseng-oseng and so on as well as the existence of Blitar district is one of the rice barns in East Java. With the existence of Blitar district as a snail-based culinary producer and one of the rice barns in East Java, this is not spared from several problems, such as the disposal of snail shells in the river and burning of rice straw in rice fields which both will cause environmental damage. This study aims to examine the use of snail shell ash and rice straw ash as a substitute material for cement in mortar mixtures against mortar compressive strength. The research method used was the experimental method by mixing fine aggregate main ingredients with snail shell ash and rice straw ash then testing the compressive strength. The results of the compressive test with the addition of the percentage of snail shell shell turned out to increase by 54.78%.


2018 ◽  
Vol 917 ◽  
pp. 297-302
Author(s):  
Jul Endawati ◽  
R. Utami ◽  
Rochaeti

Fly ash as a pozzolanic waste material can be utilized to substitute part of Portland cement in concrete mixture. The concrete paving industry utilizes the fly ash up to 50% (by weight) of the total binder. This study aims to obtain the characteristics of fly ash applications for pervious concrete. The composition of the binder developed based on the optimal proportion of fly ash from the previous study and the maximum of fly ash percentage used by the local paving industry in general. Other mix variations were made of the same binder composition with the addition of 6% of fine aggregates. The compressive strength of pervious concrete which binder composed of 63% portland cemet composite-25% fly ash-12% silica fume gained at 28 days, was not much different from the compressive strength of the pervious concrete without fine aggregate and with the binder composition of 50% FA-50% PCC and 0% SF. The value of the compressive strength test of the pervious concrete without fine aggregate is still within the range of compressive strength values ​​according to the ACI 522 R-10. The permeability rate of the pervious concrete is in the range of permeability research result of Chopra, 2013 (0.97 ÷ 1.90 cm/sec), but still higher compared to permeability rate gained by Dewoolkar, 2009 (0.83 ÷ 0.98 cm/sec).


Author(s):  
Muh. Sayfullah S ◽  
Musrifin Musrifin

This study aims to determine the characteristics of fine aggregate material characteristics originating from Rongi Village, Sampolawa Subdistrict, coarse aggregate originating from Badene Village, Batauga Subdistrict, and to determine the compressive strength produced by concrete against the mixture of materials using fine aggregate originating from Rongi Village and coarse aggregate comes from the Badene Village of Batauga District. In this study the material was mixed using water with a cement water factor of 0.59. The compressive strength test is carried out at the age of 3 days, 7 days and 28 days, with a slinder size of 15cm x 30cm. The sample of specimens in this study amounted to 15 pieces. From the results of tests carried out the compressive strength value of the concrete produced using fine aggregate material derived from Rongi Village and coarse aggregate originating from the Village of Sangatene that is an average at 3 days of 94.5 kg / cm2, age 7 days is 119.6 kg / Cm2, and age 28 days is 192.5 kg / cm2. Based on the results of the compressive strength test shows that the compressive strength value obtained is increasing with increasing age of the treatment of the test specimens.


2020 ◽  
Vol 13 (2) ◽  
pp. 93
Author(s):  
Ikrar Hanggara, ST., MT

The practice of steel lathing by students of Mechanical Engineering State Polytechnic of Malang produces an abundant amount of steel fiber waste. In this research steel fiber was utilized to substitute coarse aggregate in fiber concrete mixture. The purpose of this research is to find out the compressive and flexure strengths of fiber concrete carried out at Material Laboratory Civil Engineering Politeknik Negeri Malang, and to estimate the cost. The required data were of the results of coarse aggregate and fine aggregate tests, and physical cutting of steel lathing waste. Mix design concrete referred to SNI 03-2834-2000. Compressive strength test used 54 cylindrical specimens of Ø15 x 30cm varied at 0%, 5%, and 10% substitutions. Tests were carried out on concrete aged 7, 14, and 28 days. The flexural strength test used 6 beam specimens of 15 x 15 x 60cm varied at 0%, 5%, and 10% substitution. Tests were carried out on 28 days of concrete. The experiment resulted in 39.01 Mpa  compressive strength at 0% variation; 24.54  Mpa  compressive strength at 5% variation; 21.80 Mpa  compressive strength at 10% variation; in 3.87 Mpa  flexure strength at 0% substitution; 4.27 Mpa  flexure strength at 5% substitution; 4.07 Mpa  flexure strength at 10% substitution. The greatest result of flexure strength test occured at 5% variation; at Rp.940,276/m3 at 0% variation and at Rp.938,719/m3 at 5% variation or 0.2 % decrease. Key word : Steel lathe waste, compressive strength, flexure strength


BANGUNAN ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 41
Author(s):  
M. Abdul Aziz Kurniawan ◽  
Eko Suwarno ◽  
Boedya Djatmika

Abstrak:Ceiling brick buangan paper sludge salah satu alternatif membuat pelat lantai, secara ekonomis lebih murah dan memiliki kuat tekan setara dengan beton konvensional K300. Penelitian ini menggunakan metode eksperimen. Terdapat dua jenis benda uji yang digunakan yaitu berbentuk kubus dengan ukuran 5 cm x 5 cm x 5 cm untuk mengetahui kualitas bahan ceiling brick dan benda uji berbentuk produk ceiling brick untuk mengetahui kualitas produk ceiling brick. Variasi paper sludge yang digunakan adalah 2, 4, 6, dan 8 persen. Satu benda uji dilakukan dua pengujian yaitu uji fisik (rembesan air) dan mekanik (kuat tekan). Metode penelitian menggunakan analisa statistik One Way dan dilanjutkan analisis Tukey. Hasil dari penelitian ini adalah (1) Kuat tekan produk ceiling brick dengan campuran paper sludge berurut-urut 0, 2, 4, 6, dan 8 persen sebesar 8.43 MPa, 9.39 MPa, 11.28 MPa, 10.31 MPa, dan 8.30 MPa. Nilai rata-rata rembesan air produk ceiling brick dengan variasi berurut-urut 0%,2%, 4%, 6%, dan 8%, yaitu sebesar 0.35 ml/menit, 0.37 ml/menit, 0.35 ml/menit, 0.42 ml/menit, dan 0.36 ml/ menit. (2) Kuat tekan mortar kubus ceiling brick dengan campuran paper sludge berurut-urut 0, 2, 4, 6, dan 8 persen sebesar 105.66 MPa, 112.67 MPa, 104.20 MPa, 98.55 MPa, dan 105.24 MPa. Rembesan air mortar kubus ceiling brick dengan variasi berurut-urut 0, 2, 4, 6, dan 8 persen, yaitu sebesar 0,59 ml/menit, 0,54 ml/menit, 0,46 ml/menit, 0,27 ml/menit, dan 0,28 ml/menit. (3) Uji kuat tekan dan rembesan air terhadap produk ceiling brick yang telah dicampur paper sludge mengalami perbedaan tetapi tidak signifikan. (4) Uji kuat tekan terhadap mortar kubus ceiling brick yang dicampur paper sludge mengalami perbedaan tetapi tidak signifikan. Sedangkan uji rembesan air tehadap mortar kubus ceiling brick yang dicampur paper sludge mengalami perbedaan yang signifikan. (5) Campuran paper sludge 4 persen pada produk ceiling brick dan campuran paper sludge 2 persen pada mortar kubus ceiling brick menghasilkan kuat tekan optimum.Kata-kata kunci: paper sludge, limbah kertas, ceiling brick, sifat fisik & mekanikAbstract: Paper sludge ceiling bricks are an alternative to making floor plates, are economically cheaper and have compressive strength equivalent to conventional K300 concrete. This research is using experimental method. There are two types of specimens used which are cube shaped with a size of 5 cm x 5 cm x 5 cm to determine the quality of ceiling brick material and specimens in the form of ceiling brick products to determine the quality of ceiling brick products. Paper sludge variations used are 0, 2, 4, 6, dan 8 percent. One test object was carried out two tests, namely physical test (water seepage) and mechanical (compressive strength). The research method uses One Way statistical analysis and Tukey analysis continues. The results of this study are (1) Compressive strength of brick brick products with a mixture of paper sludge in sequence of 0, 2, 4, 6, dan 8 percent at 8.43 MPa, 9.39 MPa, 11.28 MPa, 10.31 MPa and 8.30 MPa. The average seepage value of ceiling brick products with sequential variations of 0, 2, 4, 6, dan 8 percent which is 0.35 ml / minute, 0.37 ml / minute, 0.35 ml / minute, 0.42 ml / minute minutes, and 0.36 ml / minute. (2) Compressive strength of ceiling brick cube mortar with a mixture of paper sludge in a sequence of 0, 2, 4, 6, dan 8 percent by 105.66 MPa, 112.67 MPa, 104.20 MPa, 98.55 MPa and 105.24 MPa. Mortar cube ceiling water seepage with sequential variations of 0, 2, 4, 6, dan 8 percent in the amount of 0.59 ml / minute, 0.54 ml / minute, 0.46 ml / minute, 0.27 ml / minute, and 0.28 ml / minute. (3) The compressive strength and water seepage tests on ceiling brick products that have been mixed with paper sludge experience differences but are not significant. (4) Compressive strength test of ceiling brick cube mortar mixed with paper sludge is different but not significant. While the water seepage test of ceiling brick cube mortar mixed with paper sludge experienced a significant difference. (5) 4 percent paper sludge mixture in ceiling brick products and 2 percent paper sludge mixture in ceiling brick cube mortars produce optimum compressive strength.Keywords: paper sludge, waste paper, ceiling brick, physical & mechanical properties


2021 ◽  
Vol 10 (3) ◽  
pp. e31510313341
Author(s):  
Ayrton Wagner dos Santos Gomes de Sá ◽  
Yane Coutinho ◽  
Renan Gustavo Pacheco Soares ◽  
Fernanda Cavalcanti Ferreira ◽  
Arnaldo Manoel Pereira Carneiro

The partial replacement of cement by mineral additions such as metakaolin has been widely applied in the production of high-strength and durable concretes due to the pozzolanic action, allowing a reduction in the consumption of cement. Tests are performed to determine the mechanical properties of these materials, such as compressive strength, for which there are different levelling techniques of specimens, such as sulphur and neoprene, indicated for different resistance classes. The present study aimed to characterize the behaviour, in the hardened state, of concrete produced with high initial strength Portland cement (CPV-ARI) and metakaolin and evaluate the different levelling methods. Three groups of samples dosed by the IPT-EPUSP method, with mix designs of 1:3, 1:5, and 1:6, and replacements of 8 and 10% of cement by metakaolin, were subjected to compressive strength test, at the ages of 28 days, with levelling by neoprene, and 90 days, with levelling by sulphur. It was observed an increase in strength with addition of metakaolin at both ages. Comparing the results in the two ages, it was verified an increase in strength for the mix designs 1:5 and 1:6 and a reduction for the mix design 1:3. Such fact can be explained by the high strengths achieved by this mix design. As the levelling method used was sulphur, it is confirmed the imprecision of results for strengths above 50 MPa with this technique.


2018 ◽  
Vol 8 (1) ◽  
pp. 32-41
Author(s):  
Muhamad Nasrulloh,

Concrete is a building material widely used in construction projects. In principle to create concretewith very good quality by the quality of its constituents of fine aggregate (sand), coarse aggregate,semen, and air, and the way it works. The fine aggregate (sand) as the base material for concretemanufacture is required in determining the quality of the concrete, since the aggregate is a fillerbound by cement and water into a solid mass, the quality of fine aggregate luminaire (sand) directlyaffects the quality of the concrete. The fine aggregate (sand) used in this study came from 3samples in Blitar area, ie 1 sample from Kelud mountain, 2 samples from Kali Putih, and 3 samplesfrom Brantas River. Location of research at the Laboratory Structural Civil Engineering UniversityTribhuwana Tunggadewi Malang. The method used in this study using laboratory experiments andguided on SNI 03-06912000. After a fine aggregate study of 3 samples in Bitarit obtained theaverage compressive strength test, samples of 1 fine aggregate (sand) of Kelud mount recordedaverage of concrete compressive strength of 7,802 Mpa (highest), sample 2 of fine aggregate ( sand)of Kali Putih resulted in average concrete strength test of 3.208 Mpa (lowest), and a sample of 3 fineaggregate (sand) of Brantas river yielded average concrete strength test of 3,272 MPaBeton merupakan material bahan bangunan yang banyak dipergunakan dalam pelaksanaan proyekkonstruksi. Pada prinsipnya untuk mendapatkan beton dengan kualitas yang baik sangatdipengaruhi oleh kualitas dari bahan – bahan penyusunnya yaitu agregat halus (pasir), agregat kasar,semen, dan air, serta cara pengerjaannya. Agregat halus (pasir) sebagai bahan dasar untukpembuatan beton memegang peranan penting dalam menentukan mutu beton, karena agregatmerupakan bahan pengisi yang diikat oleh semen dan air menjadi massa padat, sehingga kualitasagregat halus (pasir) mempengaruhi langsung terhadap mutu beton. Agregat halus (pasir) yangdibahas pada penelitian ini berasal dari 3 sampel di wilayah Blitar, yaitu sample 1 dari gunung Kelud,sampel 2 dari kali Putih, dan sampel 3 dari sungai Brantas. Lokasi penelitian di LaboratoriumStruktur Teknik Sipil Universitas Tribhuwana Tunggadewi Malang. Metode yang digunakan dalampenelitian ini menggunakan eksperimen laboratorium dan berpanduan pada SNI 03-06912000.Setelah dilakukan penelitian agregat halus dari 3 sampel diBlitar mendapatkan hasil uji kuat tekanrata -rata yaitu, sample 1 agregat halus (pasir) gunung Kelud menghasilkan rata – rata uji kuat tekanbeton sebesar 7,802 Mpa (tertinggi), sample 2 agregat halus (pasir) Kali Putih menghasilkan rata –rata uji kuat tekan beton sebesar 3,208 Mpa (terendah), dan sample 3 agregat halus (pasir) sungaiBrantas menghasilkan rata – rata uji kuat tekan beton sebesar 3,272 Mpa


2020 ◽  
Vol 14 (1) ◽  
pp. 18
Author(s):  
Nahari Rasif ◽  
Indri Silvia Dewi ◽  
Nisya Aviani ◽  
Widya Utama

This study aims to determine how the properties of non-sand concrete with variations in the amount of mixing fly ash. This property was analyzed by compressive strength test. We also do calculations using the MATLAB application with interactive script methods. There are 16 numbers of test objects conducted in this study. The specimen is cylindrical with a size of 7.5 cm and a height of 15 cm. Flying ash variations used ranged from 0%, 25%, 50%, and 75%. In this research, we use 1: 6 between cement and gravel. The results of the average compressive strength obtained in the mixture of 0% fly ash are 1,172 MPa, 25% 0.871 MPa, 50% 2,367 MPa and 1,465 MPa for mixture of 75% fly ash. The best compressive strength results on the 50% fly ash mixture. The density is also affected by the mixing of this fly ash. The greater the mixing of the fly ash, the smaller the density value. Keywords: compressive strength, density, fly ash, MATLAB


2021 ◽  
Vol 14 (2) ◽  
pp. 30
Author(s):  
Armin Naibaho ◽  
Agus Sugiarto ◽  
Purnama Dewi

Abstract The use of the mountain seal used as a building block for concrete should be considered, based on current usage apart from being a light construction material for housing, mountain materials from these two places are used as the main aggregate material for building construction, water structures (dams), roads. and bridges located in the surrounding Malang-Kota Batu area To determine the size of the aggregate, the coarse aggregate is sieved using a vibrating sieve, while the fine aggregate is sieved by a hydraulic sieve. In the screening process, about 70% of the filtered must pass so that high efficiency and capacity can be achieved. The compressive strength test results obtained the average compressive strength value at 28 days of concrete for concrete with fine aggregate sand zone III and coarse aggregate (gravel) in the Batu City area is equivalent to 35.65 MPa. The results of the split tensile strength test showed that the average split strength value at the age of 28 days for concrete with fine aggregate sand zone III and coarse aggregate (gravel) in the Kota Batu area is equivalent to 2.51 MPa. The compressive strength value for normal concrete is 35.65 MPa, it should produce split tensile strength = 4.179 MPa according to the provisions of SNI T-15-1991-03 Article 3.2.5 (fr = 0.70√fc '). Even though the split tensile strength value obtained in the laboratory is only 2.51 MPa, this means that the quality of materials (sand and broken stone) from Batu City is not suitable for use as building materials. Because the number 2.51 MPa is relatively much smaller than the value of 4.179 MPa, it is only one of the factors outlined in the SNI T-15-1991-03 article 3.2.5. Keywords: Mountain Material, Concrete, Concrete Compressive Strength Test, Concrete Tensile Strength Test


Sign in / Sign up

Export Citation Format

Share Document