scholarly journals Optimization of process parameters for the electrochemical oxidation treatment of petroleum refinery wastewater using porous graphite anode

2020 ◽  
Vol 13 (2) ◽  
pp. 125-135
Author(s):  
Ahmad Salah Fahim ◽  
Ali H. Abbar

The present paper deals with the electrochemical treatment of wastewaters generated from Al-Diwaniyah petroleum refinery plant in a batch electrochemical reactor using stainless steel cathode and porous graphite anode. Effects of operating parameters such as current density (5-25mA/cm2), pH (3-9), addition of NaCl (0-2g/l), and time (20–60min) on the removal efficiency of chemical oxygen demand (COD) were investigated. The results revealed that both pH and NaCl addition have the main effect on the COD removal efficiency confirming that the system was governed by reaction conditions in the bulk of solution not upon the electro oxidation of chloride ion on the surface of the electrode. Parametric optimization was carried out using Response Surface Methodology (RSM) combined with Box–Behnken Design (BBD) to maximize the removal of COD. Under optimized operating conditions of initial pH: 3, current density = 25 mA/cm2, NaCl conc.  = 2g/l, and time = 60 min, the removal efficiency of COD was found to be 98.16% with energy consumption of 9.85 kWh/kgCOD which is relatively lower than the previous works.

2014 ◽  
Vol 50 (2) ◽  
pp. 198-209 ◽  
Author(s):  
Malika Aoudjehane ◽  
Mohamed Elghazali Benatallah

A procedure of electrocoagulation (EC) using iron electrodes has been used for the treatment of the wastewaters produced by the Beni-Tamou dairy in Algeria. The effect of the operating conditions, such as the current intensity, the electrolysis time, the pH of the solution and the electrical conductivity, on the removal efficiency of chemical oxygen demand (COD) and the total suspended solids (TSS) has been studied. An inter-electrode distance of 1 cm has been maintained constant during the tests. It has been found that an increase in electrolysis time and current density improved the treatment significantly, albeit with a greater consumption of energy as well as an increased electrode consumption. The results of the electrocoagulation treatment under various operating conditions show that the optimal efficiency has been obtained under the following conditions: 60 minutes of electrolysis, a current density of 200 A/m2, a pH 8, an electrical conductivity of 4.72 mS/cm and a consumption energy of 13.57 kWh/m3. Under these conditions, the removal efficiency for the COD and TSS parameters is 93.26 and 99.3%, respectively. The optimal treatment conditions of dairy wastewaters have resulted in final COD and TSS concentrations of 41.5 and 27 mg/L, respectively, values that are conform to industrial liquid effluents discharge norms.


2021 ◽  
Vol 11 (18) ◽  
pp. 8401
Author(s):  
Rachid El Brychy ◽  
Mohamed Moutie Rguiti ◽  
Nadia Rhazzane ◽  
Moulay Driss Mellaoui ◽  
Khalid Abbiche ◽  
...  

Today, organic wastes (paints, pigments, etc.) are considered to be a major concern for the pollution of aqueous environments. Therefore, it is essential to find new methods to solve this problem. This research was conducted to study the use of electrochemical processes to remove organic pollutants (e.g., crystal violet (CV)) from aqueous solutions. The galvanostatic electrolysis of CV by the use of Ti/Pt/SnO2 anode, were conducted in an electrochemical cell with 100 mL of solution using Na2SO4 and NaCl as supporting electrolyte, the effect of the important electrochemical parameters: current density (20–60 mA cm−2), CV concentration (10–50 mg L−1), sodium chloride concentration (0.01–0.1 g L−1) and initial pH (2 to 10) on the efficiency of the electrochemical process was evaluated and optimized. The electrochemical treatment process of CV was monitored by the UV-visible spectrometry and the chemical oxygen demand (COD). After only 120 min, in a 0.01mol L−1 NaCl solution with a current density of 50 mA cm−2 and a pH value of 7 containing 10 mg L−1 CV, the CV removal efficiency can reach 100%, the COD removal efficiency is up to 80%. The process can therefore be considered as a suitable process for removing CV from coloured wastewater in the textile industries.


2018 ◽  
Vol 18 (1) ◽  
pp. 13
Author(s):  
Leandro Fleck ◽  
Jeysa Piza Santana Passos ◽  
Andrieli Cristina Helmann ◽  
Eduardo Eyng ◽  
Laércio Mantovani Frare ◽  
...  

Textile industries have as main characteristic the generation of effluents with high color, and efficient treatment techniques are necessary. In this context, this study compared the efficiency of the electrochemical treatment for color removal from synthetic textile effluent using two configurations of sacrificial electrodes, parallel plates and array of cylindrical electrodes. For application of the electroflocculation technique, an electrochemical reactor was used, in a laboratory scale, operated in a continuous flow. The synthetic textile effluent was prepared with preset concentrations of reactive dye Blue 5G and sodium chloride. Sacrificial iron (Fe) electrodes with different configurations were used: parallel plates and cylindrical electrodes. The Hydraulic Retention Time (HRT) and electric current density (j) were controlled, and their effects on color removal were evaluated using a Central Composite Rotational Design (CCRD) composed of 12 trials. For the electrochemical treatment using parallel plates, the color removal efficiency ranged from 56.13% to 98.95% and for the electrochemical treatment using an array of cylindrical electrode, the color removal efficiency varied from 2.11% to 97.84%. The mathematical models representative of the process explained a high proportion of the total data variability, with a coefficient of variation of 99.49% and 97.21% for parallel plates and arrangement of cylindrical electrodes, respectively. The electrochemical treatment using parallel plates presents advantages over the configuration using a cylindrical electrode array, since the color removal efficiency is superior under the same operating conditions, representing economic and environmental gains.


2019 ◽  
Vol 12 (3) ◽  
pp. 144-150
Author(s):  
Sajjad Sarhan Jawad ◽  
Ali H. Abbar

An electrochemical oxidation method was performed in a batch electrochemical reactor using graphite anodes for treating an effluent obtained from Al-Diwaniyah petroleum refinery plant. The effective f process parameters like current density (4-20m Acm-2), pH (3-9), and NaCl concentration (0-3 g/l) on the COD and phenol removal efficiency have been investigated. The results reveal that the best conditions were current density 12 mA cm-2, pH 7, NaCl concentration 2 gl-1 at a treatment time of 60 minutes. Under  best conditions of COD removal efficiency 100% and phenol removal efficiency 99.12% were obtained at current efficiency 33.5% and power consumption 59.9 kWh/kg COD. The anodic oxidation was proven to be efficient for treatment Al-Diwaniyah petroleum refinery effluent to get effluent with features in agreement with the standard limits for discharge to the environment at a lower cost.


2012 ◽  
Vol 4 (2) ◽  
pp. 304-309 ◽  
Author(s):  
A. K. Chopra ◽  
Arun Kumar Sharma

The present investigation observed the effect of operating time, current density, pH and supporting electrolyte on the removal efficiency of Turbidity (TD) and Biochemical oxygen demand (BOD) of secondarily treated sewage (STS) using electrochemical process. A glass chamber of 2 litre volume was used for the experiment with two electrode plates of aluminum, each having an area of 125 cm2 and 2 cm distance apart from each other. The treatment showed that the removal efficiency of TD and BOD increased to 87.41 and 81.38 % respectively with theincrease of current density (1.82 -7.52 mA/cm2), time (5 - 40 mins.) and different pH (4-8) of the STS. The most effective removal efficiency was observed around the pH 7. Further, 0.5 g/l NaCl as a supporting electrolyte for electrochemical treatment of STS was found to be more efficient for an increase to 95.56 % and 86.99 % for the removal of TD and BOD at 7.52 mA/cm2 current density in 40 mins. respectively. The electrode and energy consumption was found to vary from 2.52 x10-2 to 10.51 x10-2 kg Al/m3 and 2.76 kwh/m3 to 45.12 kWh/m3 depending on the operating conditions.The kinetic study results revealed that reaction rate (k) increased from 0.0174 to 0.03 min-1 for TD and 0.0169 to 0.024 min-1 for BOD with increase in current density from 1.82 to 7.52 mA/cm2.


2012 ◽  
Vol 441 ◽  
pp. 555-558
Author(s):  
Feng Tao Chen ◽  
San Chuan Yu ◽  
Xing Qiong Mu ◽  
Shi Shen Zhang

The Ti/SnO2-Sb2O3/PbO2 electrodes were prepared by thermal decomposition method and its application in the electrochemical degradation of a heteropolyaromatic dye, Methylene blue (MB), contained in simulated dye wastewater were investigated under mild conditions. The effects of pH, current density and electrolysis time on de-colorization efficiency were also studied. Chemical oxygen demand (COD) was selected as another parameter to evaluate the efficiency of this degradation method on treatment of MB wastewater. The results revealed that when initial pH was 6.0, current density was 50 mA·cm2, electrolysis time was 60 min, Na2SO4 as electrolyte and its concentration was 3.0 g·dm3, the de-colorization and COD removal efficiency can reach 89.9% and 71.7%, respectively.


2018 ◽  
Vol 78 (6) ◽  
pp. 1260-1267 ◽  
Author(s):  
Mohammad Malakootian ◽  
Mohammad Reza Heidari

Abstract Phenol and its derivatives are available in various industries such as refineries, coking plants, steel mills, drugs, pesticides, paints, plastics, explosives and herbicides industries. This substance is carcinogenic and highly toxic to humans. The purpose of the study was to investigate the removal of phenol from wastewater of the steel industry using the electrocoagulation–photo-Fenton (EC-PF) process. Phenol and chemical oxygen demand (COD) removal efficiency were investigated using the parameters pH, Fe2+/H2O2, reaction time and current density. The highest removal efficiency rates of phenol and COD were 100 and 98%, respectively, for real wastewater under optimal conditions of pH = 4, current density = 1.5 mA/cm2, Fe2+/H2O2 = 1.5 and reaction time of 25 min. Combination of the two effective methods for the removal of phenol and COD, photocatalytic electrocoagulation photo-Fenton process is a suitable alternative for the removal of organic pollutants in industry wastewater because of the low consumption of chemicals, absence of sludge and other side products, and its high efficiency.


2013 ◽  
Vol 303-306 ◽  
pp. 2616-2619
Author(s):  
Xiao Yan Sun ◽  
Pei Dao Pan ◽  
Jang Jie Wang

This mechanical processing waste emulsion for the study, handled by pulse electrolysis. Arrangements by orthogonal testing, experimental study on plate distance (d), current density (i), the pH value and the pulse width (tP) impact on COD removal efficiency, very poor analysis of test data to determine various factors affecting the COD removal efficiency of primary and secondary sort: pH value > current density > pulse width > plate distance, optimal operating conditions. Orthogonal experimental data derived from regression analysis, determination of cross of quadratic polynomial regression equations, mathematical model. Tests confirmed that pulse electrochemical method for treatment of waste emulsion with low energy consumption, short response time, and other advantages, strong applicability of wastewater, building mathematical models, providing theoretical basis for subsequent design.


2015 ◽  
Vol 73 (5) ◽  
pp. 1155-1165 ◽  
Author(s):  
J. D. García-Espinoza ◽  
P. Gortáres-Moroyoqui ◽  
M. T. Orta-Ledesma ◽  
P. Drogui ◽  
P. Mijaylova-Nacheva

Carbamazepine (CBZ) is one of the most frequently detected organic compounds in the aquatic environment. Due to its bio-persistence and toxicity for humans and the environment its removal has become an important issue. The performance of the electrochemical oxidation process and in situ production of reactive oxygen species (ROS), such as O3 and H2O2, for CBZ removal have been studied using Ti/PbO2 cylindrical mesh anode in the presence of Na2SO4 as supporting electrolyte in a batch electrochemical reactor. In this integrated process, direct oxidation at anode and indirect oxidation by in situ electrogenerated ROS can occur simultaneously. The effect of several factors such as electrolysis time, current intensity, initial pH and oxygen flux was investigated by means of an experimental design methodology, using a 24 factorial matrix. CBZ removal of 83.93% was obtained and the most influential parameters turned out to be electrolysis time, current intensity and oxygen flux. Later, the optimal experimental values for CBZ degradation were obtained by means of a central composite design. The best operating conditions, analyzed by Design Expert® software, are the following: 110 min of electrolysis at 3.0 A, pH = 7.05 and 2.8 L O2/min. Under these optimal conditions, the model prediction (82.44%) fits very well with the experimental response (83.90 ± 0.8%). Furthermore, chemical oxygen demand decrease was quantified. Our results illustrated significant removal efficiency for the CBZ in optimized condition with second order kinetic reaction.


Sign in / Sign up

Export Citation Format

Share Document