scholarly journals Synthesis and Characterization of Pure and Rare-Earth Metal Gd Doped SnO2-CuO Nanoparticles by Co-Precipitation Method

2018 ◽  
Vol 4 (5) ◽  
pp. 478-482
Author(s):  
L. Prakash ◽  
C. Tirupathi

Pure and rare-earth metal Gd doped SnO2-CuO nanoparticles were successfully prepared from the starting materials SnCl2, CuCl2 and doping element gadolinium nitrate. Pure and Gd doped SnO2-CuO were synthesized by co-precipitation method. The samples were characterized using X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), UV-Vis, SEM, EDX and dielectric studies. The XRD analysis reveals that the rare-earth metal Gd dopants were substituted into rutile SnO2-CuO nanoparticles. Pure SnO2-CuO nanoparticles have an average crystallite size of 15 nm and rare-earth metal Gd doped SnO2-CuO nanoparticles have 18 nm. The average crystallite size of the sample increases when dopant was used and XRD peak intensity also increases when compared to pure SnO2-CuO nanoparticles. The optical absorption measurements exposed the nanometric size of the materials influences the energy band gap. Optical band gap was found to be 5.08 eV for pure SnO2-CuO nanoparticles and 5.14 eV for Gd doped SnO2-CuO nanoparticles. Surface morphology of pure and Gd doped SnO2-CuO nanoparticles annealed at 400 °C shows that most of the particles are rod shaped and hence it may have better sensitivity. Dielectric constant and dielectric loss decrease with increasing frequency at 100 °C and 200 °C. Doped samples show larger dielectric properties than pure SnO2-CuO nanoparticles.

2021 ◽  
Vol 18 (18) ◽  
Author(s):  
Jemibha PAULDURAI ◽  
Ahila Mudisoodum PERUMAL ◽  
Dhanalakshmi JEYARAJA ◽  
Panimaya Valan Rakkini AMAL

The aim of this work is to synthesis CuO nanoparticles and investigates their eminent properties to identify their diverse application capability in the field of solar cells.  In this work, CuO nanoparticles were synthesized by precipitation method using Copper (II) nitrate and Copper (II) chloride. Surface effects due to defects, structural properties related through lattice parameter, and crystallite sizes of nanoparticles have been identified from XRD. The crystal plane and reflection peak position was calculated using Bragg’s law. It showed that CuO nanoparticles have a monoclinic structure, and that the average crystallite size of CuO nanoparticles was 28.82 nm. n-type semiconductor behavior had a direct band of Eg = 1.465(2) eV, analyzed from optical studies by DRS. The band gap of the sample was determined from the reflectance spectra using Kubelka-Munk (K-M) function. Elements present were found through absorption peak of FTIR. The blue shifts observed in FTIR spectra in CuO nanoparticles were compared with that of bulk CuO, and absorption band agreed with XRD results.  Morphological studies revealed the formation of spherical flake-shaped formation of CuO. It had a higher surface area and was well-suited to solar cell applications. HIGHLIGHTS The CuO nanoparticles were synthesized by precipitation method The average crystallite size of CuO nanoparticles obtained in the range of 28.82 nm Spherical flake-shaped nanostruture with higher surface area formed in this method Optical property of CuO (Eg = 1.465 eV) and good electron mobility make it a suitable solar cell absorber material GRAPHICAL ABSTRACT


2018 ◽  
Vol 55 (5B) ◽  
pp. 257
Author(s):  
Pham Khanh Huy

Rare earth metal elements have been used widely in many different fields such as in fluorescence, polishing powder, nuclear, laser applications, fiber optics, superconductors, permanent magnets, capacitors and radar technology, etc. In recent years, the development and demand trend led to a large amount of electric and electronic waste (e-waste) generated annually. Faced with issues of shortage on using demand of rare earth metal, many studies have been done in order to recover, recycle and reuse this metal from e-waste. In this research, rare earth elements were recovered from permanent magnet which was dismantled from some kinds of waste hard disk drives HDDs.Result of reseach showed that magnetic flux density of the NdFeB magnet was eliminated completely at 300 ºC in one hour. The leaching efficiency of magnet powder sample reached 99.4 % after 10 min reaction in H2SO4 acid have concentration > 0.3 M under the leaching conditions: stirring speed of 200 rpm, particle size < 0.25 mm, solid/liquid (S/L) ratio 20 g/1l and temperature reaction is 25 ºC. Total rare earth metal elements can be recovered by the using selective crystallization and precipitation method in leaching solution by Na2SO4 and oxalic acid up to 98.36 % was with purity up to 94.32 %. Nd2(C2O4) transformed into Nd2O3 after being calcinated at 700 °C.


2012 ◽  
Vol 585 ◽  
pp. 110-114
Author(s):  
A. Chithambararaj ◽  
Arumugam Chandra Bose

Single phase hexagonal molybdenum oxide (h-MoO3) nanocrystals were successfully synthesized by solution based chemical precipitation method. The effect of mineralizer (KNO3 salt) on hexagonal phase, crystallite size, and surface morphologies of MoO3 was investigated by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) analysis. The XRD result indicates that the diffractograms exhibit characteristic hexagonal phase of MoO3. From the line broadening analysis, the average crystallite size was calculated and estimated. A less crystallite size of 34 nm was obtained in the presence of mineralizing agent KNO3 in comparison to without mineralizer (46 nm). The particle exhibits rod like morphology with perfect hexagonal cross-section and well faceted top and side surfaces. Further, the thermal and optical properties were studied by thermo gravimetric analysis (TGA) and diffuse reflectance spectroscopy (DRS) measurements. The weight loss due to decomposition of intercalated water and ammonia were observed. By TGA analysis, the mineralizer assisted sample shows higher phase stability with the phase transition temperature of 520 °C due to the incorporation of K+ in MoO3 structure. The optical band gap energy was calculated using Kubelka-Muck function and the values were found to be 3.11 eV and 2.97 eV for KNO3 assisted and non-assisted MoO3 samples respectively. The observed increase in optical band gap (Eg) for h-MoO3 synthesized in the presence of KNO3 was attributed to the size dependent optical properties.


2016 ◽  
Vol 4 (26) ◽  
pp. 6295-6301 ◽  
Author(s):  
Bing-Hua Lei ◽  
Qingrong Kong ◽  
Zhihua Yang ◽  
Yun Yang ◽  
Ying Wang ◽  
...  

A hierarchized band gap, as well as enhanced linear and nonlinear optical responses, result from (d–p)π conjugation interactions in trivalent rare-earth metal nitrates.


2020 ◽  
Vol 49 (42) ◽  
pp. 14985-14994
Author(s):  
Xu-Sheng Gao ◽  
Mei-Juan Ding ◽  
Jin Zhang ◽  
Li-Duo Zhao ◽  
Xiao-Ming Ren

All solid solutions (EuxY1−x-PTC, x = 0.013–0.82) are isomorphic to Eu-PTC, but different from Y-PTC, and show phase selectivity as well as excitation wavelength dependent emission.


2021 ◽  
Vol 1104 (1) ◽  
pp. 012025
Author(s):  
Sachendra ◽  
Shailesh Kumar Singh ◽  
Ujjwal ◽  
Satyajeet Kumar ◽  
Kuldeep Singh

Sign in / Sign up

Export Citation Format

Share Document