scholarly journals Facile Synthesis of Spherical Flake-shaped CuO Nanostructure and Its Characterization towards Solar Cell Application

2021 ◽  
Vol 18 (18) ◽  
Author(s):  
Jemibha PAULDURAI ◽  
Ahila Mudisoodum PERUMAL ◽  
Dhanalakshmi JEYARAJA ◽  
Panimaya Valan Rakkini AMAL

The aim of this work is to synthesis CuO nanoparticles and investigates their eminent properties to identify their diverse application capability in the field of solar cells.  In this work, CuO nanoparticles were synthesized by precipitation method using Copper (II) nitrate and Copper (II) chloride. Surface effects due to defects, structural properties related through lattice parameter, and crystallite sizes of nanoparticles have been identified from XRD. The crystal plane and reflection peak position was calculated using Bragg’s law. It showed that CuO nanoparticles have a monoclinic structure, and that the average crystallite size of CuO nanoparticles was 28.82 nm. n-type semiconductor behavior had a direct band of Eg = 1.465(2) eV, analyzed from optical studies by DRS. The band gap of the sample was determined from the reflectance spectra using Kubelka-Munk (K-M) function. Elements present were found through absorption peak of FTIR. The blue shifts observed in FTIR spectra in CuO nanoparticles were compared with that of bulk CuO, and absorption band agreed with XRD results.  Morphological studies revealed the formation of spherical flake-shaped formation of CuO. It had a higher surface area and was well-suited to solar cell applications. HIGHLIGHTS The CuO nanoparticles were synthesized by precipitation method The average crystallite size of CuO nanoparticles obtained in the range of 28.82 nm Spherical flake-shaped nanostruture with higher surface area formed in this method Optical property of CuO (Eg = 1.465 eV) and good electron mobility make it a suitable solar cell absorber material GRAPHICAL ABSTRACT

2018 ◽  
Vol 4 (5) ◽  
pp. 478-482
Author(s):  
L. Prakash ◽  
C. Tirupathi

Pure and rare-earth metal Gd doped SnO2-CuO nanoparticles were successfully prepared from the starting materials SnCl2, CuCl2 and doping element gadolinium nitrate. Pure and Gd doped SnO2-CuO were synthesized by co-precipitation method. The samples were characterized using X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), UV-Vis, SEM, EDX and dielectric studies. The XRD analysis reveals that the rare-earth metal Gd dopants were substituted into rutile SnO2-CuO nanoparticles. Pure SnO2-CuO nanoparticles have an average crystallite size of 15 nm and rare-earth metal Gd doped SnO2-CuO nanoparticles have 18 nm. The average crystallite size of the sample increases when dopant was used and XRD peak intensity also increases when compared to pure SnO2-CuO nanoparticles. The optical absorption measurements exposed the nanometric size of the materials influences the energy band gap. Optical band gap was found to be 5.08 eV for pure SnO2-CuO nanoparticles and 5.14 eV for Gd doped SnO2-CuO nanoparticles. Surface morphology of pure and Gd doped SnO2-CuO nanoparticles annealed at 400 °C shows that most of the particles are rod shaped and hence it may have better sensitivity. Dielectric constant and dielectric loss decrease with increasing frequency at 100 °C and 200 °C. Doped samples show larger dielectric properties than pure SnO2-CuO nanoparticles.


1998 ◽  
Vol 13 (4) ◽  
pp. 939-943 ◽  
Author(s):  
Junfeng Ma ◽  
Masahiro Yoshimura ◽  
Masato Kakihana ◽  
Masatomo Yashima

A series of solid solutions (1 − x) ZrO2 · xY0.857 W0.143 O1.714 (1/7Y6WO12) of metastable cubic phase were synthesized at 800 °C through a polymerized complex method. Lattice parameter a0 of solid solutions varies linearly with Y0.857 W0.143 O1.714 content (x). Crystallization began to occur above 400 °C from amorphous precursor to yield at 800 °C fine powders of 6–10 nm and 19–40 m2/g for crystallite size and surface area, respectively.


2021 ◽  
Author(s):  
P. Raju ◽  
Joseph Prince Jesuraj ◽  
S. Muthukumaran

Abstract The controlled synthesis of Cd0.9Zn0.1S, Cd0.89Zn0.1Cu0.01S and Cd0.87Zn0.1Cu0.03S nanostructures by simple chemical co-precipitation technique was reported. The XRD investigation confirmed the basic CdS cubic structure on Zn-doped CdS and also Zn, Cu dual doped CdS with no secondary/impurity related phases. No modification in cubic structure was detected during the addition of Zn/Cu into CdS. The reduction of crystallite size from 63 Å to 40 Å and the changes in lattice parameter confirmed the incorporation of Cu into Cd0.9Zn0.1S and generation of Cu related defects. The shift of absorption edge along upper wavelength region and elevated absorption intensity by Cu doping can be accredited to the collective consequence of quantization and the generation of defect associated states. The enhanced optical absorbance and the reduced energy gap recommended that Cd0.87Zn0.1Cu0.03S nanostructure is useful to enhance the efficiency of opto-electronic devices. The presence of Cd-S / Zn-Cd-S /Zn/Cu-Cd-S chemical bonding were confirmed by Fourier transform infrared investigation. The elevated green emissions by Cu incorporation was explained by decrease of crystallite size and creation of more defects. Zn, Cu dual doped CdS nanostructures are recognized as the possible and also efficient photo-catalyst for the removal dyes like methylene blue. The enhanced photo-catalytic behaviour of Zn, Cu dual doped CdS is the collective consequences of high density electron-hole pairs creation, enhanced absorbance in the visible wavelength, surface area enhancement, reduced energy gap and the formation of novel defect associated states. The stability measurement signified that Cu doped Cd0.9Zn0.1S exhibits superior dye removal ability and better stability even after 6 repetitive runs with limited photo-corrosion.


2021 ◽  
Vol 10 (3) ◽  
pp. xx-xx
Author(s):  
Thao Pham Thi Minh ◽  
Huong Do Thi ◽  
Hai Le Thi

The ZnO-ZrO2 nanocompsite materials in the molar ratio (1:0; 1:1; 1:2; 2:1; 3:4; 4:3; 0:1) were prepared by a two-stage precipitation method with ultrasonic vibrations. The obtained ZnO-ZrO2 materials were characterized by XRD, SEM, UV-vis. XRD data identified phase of the ZnO and phase of ZrO2 in all obtained samples. The average crystallite size of the samples was between 18 to 30 nm. As UV-Vis spectra, the band gap of ZnO-ZrO2 composite (ZZ34R) is 3,06eV. The photocatalytic reactions confirmed that the nanocomposite sample showed higher photocatalytic activity than the pure oxides samples for the degradation phenol under 100W incandescent lamp. Among the prepared samples, the best sample for photocatalytic degration of phenol is the ZZ34R which the molar ratio ZnO:ZrO2 = 3:4 with 23% remaining phenol content after 300 minutes. The photodegradation phenol of sample with ultrasonic vibrations is higher than the sample without ultrasonic vibrations. This indicates that the materials are capable of treating phenol in wastewater.


2014 ◽  
Vol 20 (1) ◽  
pp. 97-107 ◽  
Author(s):  
Mohammad Behnajady ◽  
Shahrzad Yavari ◽  
Nasser Modirshahla

In this work TiO2-P25 nanoparticles with high surface area have been used as adsorbent for the removal of C.I Acid Red 27 (AR27), as an organic contaminant from aqueous solution. Characteristics of phases and crystallite size of TiO2-P25 nanoparticles were achieved from XRD and the surface area and pore size distribution were obtained from BET and BJH techniques. TiO2-P25 nanoparticles with almost 80% anatase and 20% rutile phases, the average crystallite size of 18 nm, have specific surface area of 56.82 m2 g-1. The effect of various parameters like initial AR27 concentration, pH, contact time and adsorbent dosage has been carried out in order to find desired adsorption conditions. The desired pH for adsorption of AR27 onto TiO2-P25 nanoparticles was 3. The equilibrium data were analyzed with various 2-, 3- and 4-parameter isotherm models. Equilibrium data fitted very well by the 4-parameter Fritz-Schluender model. Results of adsorption kinetics study indicated that the pseudo-second order kinetics provided the best fit with correlation coefficients close to unity.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
M. Mhadhbi ◽  
M. Khitouni ◽  
L. Escoda ◽  
J. J. Suñol ◽  
M. Dammak

A nanostructured disordered Fe(Al) solid solution was obtained from elemental powders of Fe and Al using a high-energy ball mill. The transformations occurring in the material during milling were studied with the use of X-ray diffraction. In addition lattice microstrain, average crystallite size, dislocation density, and the lattice parameter were determined. Scanning electron microscopy (SEM) was employed to examine the morphology of the samples as a function of milling times. Thermal behaviour of the milled powders was examined by differential scanning calorimetry (DSC). The results, as well as dissimilarity between calorimetric curves of the powders after 2 and 20 h of milling, indicated the formation of a nanostructured Fe(Al) solid solution.


2002 ◽  
Vol 17 (3) ◽  
pp. 609-613 ◽  
Author(s):  
Olivia A. Graeve ◽  
Zuhair A. Munir

Nanocrystalline TaC was synthesized by the field-activated combustion method. The crystallite size ranged from about 30 to 55 nm, depending on the applied field. At low fields (8.54 ≤ E < 16.39 V cm−1) the average crystallite size was relatively unaffected by the field, but it showed a significant increase at fields higher than 16.39 V cm−1. From temperature measurements, this field was found to coincide with the melting of Ta. The combustion wave velocity likewise showed a significant increase when the temperature was at the melting point. The composition of the product showed a dependence on the magnitude of the applied field. At low field values (above a threshold) the product contained Ta2C. When synthesized at high fields, the product showed the presence of TaC phase only. The lattice parameter and the C/Ta ratio showed a slight dependence on the field, both increasing with an increase in the magnitude of the field.


Author(s):  
N. P. Shabelskaya ◽  
M. A. Egorova ◽  
G. M. Chernysheva ◽  
A. N. Saliev ◽  
A. N. Yatsenko ◽  
...  

Scientific interest in the processes of forming the structure of magnetic spinels and composites based on them is due to the possibility of synthesis of materials with multifunctional properties. The process of formation of cobalt (II) nanocrystalline ferrite and CoFe2O4/C composite material is studied. The mechanism of formation of structure of materials including a stage of formation of hydroxides of transition elements, precursors on the basis of complex connections of cations of iron and cobalt with citric acid and their subsequent destruction at heating is offered. The synthesized materials were characterized by x-ray phase analysis, electron microscopy, low-temperature nitrogen adsorption, Debye-Scherrer methods. It is shown that cobalt (II) ferrite has a developed surface, the value of the surface area according to the BET method is 16 m2/g, the average size of the crystallites determined by the Debye-Scherrer equation is 4.0 nm. Activated carbon with a specific surface area of 685 m2/g was used to prepare the composite material. The resulting composite material has a surface area of 222 m2/g, the average crystallite size of 1.1 nm. Cobalt (II) ferrite, included in the composition of the composite material CoFe2O4/C, has a slightly higher value of the lattice parameter, compared with pure cobalt (II) ferrite, which is associated with a decrease in the degree of spinel inversion. The synthesized composite material was tested in the process of adsorption of copper (II) cations from an aqueous solution. It is shown that CoFe2O4/C exhibits an increased adsorption capacity for copper (II) cations in comparison with pure activated carbon, despite a decrease in the specific surface area. The result is explained by the involvement of cobalt (II) ferrite in the adsorption process. The obtained materials may be of interest as catalysts, adsorbents.


2019 ◽  
Vol 56 ◽  
pp. 142-151
Author(s):  
Hassan Shokry ◽  
Marwa Elkady ◽  
Hesham Hamad

Nano sized ZrO2 nanopowder was synthesized by precipitation method. Phase transformation was investigated as a function of calcination temperature by XRD, SEM , and FT-IR. It is indicated that the thermal anneling from 400 to 800 °C resulted in increasing the average crystallite size from 12 to 20 nm. As the calcination temperature increased, the crystallite size and the agglomeration were increased. The increase in the monoclinic content and grain growth are caused by the calcination temperatures even calcination at 800 °C.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Sheena Xavier ◽  
Smitha Thankachan ◽  
Binu P. Jacob ◽  
E. M. Mohammed

A series of samarium-substituted cobalt ferrites (CoFe2−xSmxO4 with x=0.00, 0.05, 0.10, 0.15, 0.20, 0.25) was synthesized by the sol-gel method. The structural characterizations of all the prepared samples were done using XRD and FTIR. These studies confirmed the formation of single-phase spinel structure in all the compositions. The increase in the value of lattice parameter with increase in samarium concentration suggests the expansion of unit cell. The Hall-Williamson analysis is used for estimating the average crystallite size and lattice strain induced due to the substitution of samarium in the prepared samples. Crystallinity and the crystallite size are observed to increase with the concentration of samarium. The surface morphology and particle size of a typical sample were determined using SEM and TEM respectively. The substitution of samarium strongly influences the magnetic characteristics, and this is confirmed from the magnetization measurements at room temperature.


Sign in / Sign up

Export Citation Format

Share Document