scholarly journals Method of neural network recognition of falsified images

2020 ◽  
Vol 2 (95) ◽  
pp. 32-42
Author(s):  
V.V. Bilotserkovskyy ◽  
S.G. Udovenko ◽  
L.E. Chala

Methods for generating images falsified using Deepfake technologies and methods for detecting them are considered. A method for detecting falsified images is proposed, based on the joint use of an ensemble of convolutional neural models, the Attention mechanism and a Siamese network learning strategy. The ensembles of models were formed in different ways (using two, three or more components). The result was calculated as the average value of the AUC and LogLoss indices from all the models included in the ensemble. This approach improves the accuracy of convolutional neural network classifiers for detecting static and dynamic images created using Deepfake technologies.

2018 ◽  
Vol 14 (10) ◽  
pp. 155014771880594 ◽  
Author(s):  
Xu Kang ◽  
Bin Song ◽  
Jie Guo ◽  
Xiaojiang Du ◽  
Mohsen Guizani

Vehicle tracking task plays an important role on the Internet of vehicles and intelligent transportation system. Beyond the traditional Global Positioning System sensor, the image sensor can capture different kinds of vehicles, analyze their driving situation, and can interact with them. Aiming at the problem that the traditional convolutional neural network is vulnerable to background interference, this article proposes vehicle tracking method based on human attention mechanism for self-selection of deep features with an inter-channel fully connected layer. It mainly includes the following contents: (1) a fully convolutional neural network fused attention mechanism with the selection of the deep features for convolution; (2) a separation method for template and semantic background region to separate target vehicles from the background in the initial frame adaptively; (3) a two-stage method for model training using our traffic dataset. The experimental results show that the proposed method improves the tracking accuracy without an increase in tracking time. Meanwhile, it strengthens the robustness of algorithm under the condition of the complex background region. The success rate of the proposed method in overall traffic datasets is higher than Siamese network by about 10%, and the overall precision is higher than Siamese network by 8%.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2868
Author(s):  
Wenxuan Zhao ◽  
Yaqin Zhao ◽  
Liqi Feng ◽  
Jiaxi Tang

The purpose of image dehazing is the reduction of the image degradation caused by suspended particles for supporting high-level visual tasks. Besides the atmospheric scattering model, convolutional neural network (CNN) has been used for image dehazing. However, the existing image dehazing algorithms are limited in face of unevenly distributed haze and dense haze in real-world scenes. In this paper, we propose a novel end-to-end convolutional neural network called attention enhanced serial Unet++ dehazing network (AESUnet) for single image dehazing. We attempt to build a serial Unet++ structure that adopts a serial strategy of two pruned Unet++ blocks based on residual connection. Compared with the simple Encoder–Decoder structure, the serial Unet++ module can better use the features extracted by encoders and promote contextual information fusion in different resolutions. In addition, we take some improvement measures to the Unet++ module, such as pruning, introducing the convolutional module with ResNet structure, and a residual learning strategy. Thus, the serial Unet++ module can generate more realistic images with less color distortion. Furthermore, following the serial Unet++ blocks, an attention mechanism is introduced to pay different attention to haze regions with different concentrations by learning weights in the spatial domain and channel domain. Experiments are conducted on two representative datasets: the large-scale synthetic dataset RESIDE and the small-scale real-world datasets I-HAZY and O-HAZY. The experimental results show that the proposed dehazing network is not only comparable to state-of-the-art methods for the RESIDE synthetic datasets, but also surpasses them by a very large margin for the I-HAZY and O-HAZY real-world dataset.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4154 ◽  
Author(s):  
Anthony Faustine ◽  
Lucas Pereira

The advance in energy-sensing and smart-meter technologies have motivated the use of a Non-Intrusive Load Monitoring (NILM), a data-driven technique that recognizes active end-use appliances by analyzing the data streams coming from these devices. NILM offers an electricity consumption pattern of individual loads at consumer premises, which is crucial in the design of energy efficiency and energy demand management strategies in buildings. Appliance classification, also known as load identification is an essential sub-task for identifying the type and status of an unknown load from appliance features extracted from the aggregate power signal. Most of the existing work for appliance recognition in NILM uses a single-label learning strategy which, assumes only one appliance is active at a time. This assumption ignores the fact that multiple devices can be active simultaneously and requires a perfect event detector to recognize the appliance. In this paper proposes the Convolutional Neural Network (CNN)-based multi-label learning approach, which links multiple loads to an observed aggregate current signal. Our approach applies the Fryze power theory to decompose the current features into active and non-active components and use the Euclidean distance similarity function to transform the decomposed current into an image-like representation which, is used as input to the CNN. Experimental results suggest that the proposed approach is sufficient for recognizing multiple appliances from aggregated measurements.


Sign in / Sign up

Export Citation Format

Share Document