scholarly journals Microbial community profiling applications in plant protection

2010 ◽  
Vol 63 ◽  
pp. 271-271
Author(s):  
E.M. Gerard ◽  
J. Monk ◽  
S.A. Wakelin ◽  
M. O?Callaghan

The function and diversity of microbial communities associated with plants insects and soils directly impacts on plant health and production Although community level investigations appear daunting significant gains are being made through the application of molecular biology An important technique involves polymerase chain reaction (PCR) amplification of genes from DNA/RNA isolated from the environment removing limitations caused by microbial cultivation PCR amplicons are then separated using denaturing gradient gel electrophoresis (DGGE) providing a fingerprint of the diversity of that gene within the microbial community This PCRDGGE based method originally targeted the ribosomal RNA (rRNA) genes present in all microorganisms Other genetic markers are now used including general markers coding for conserved proteins involved in core cell functions or genes essential to activities defining specific functional groups such as ammonia oxidation nitrogen fixation or antibiotic production Reversetranscription PCRDGGE on community RNA can be used to profile metabolically active populations PCRDGGE allows for the rapid comparison of multiple samples and when used in combination with other approaches provides robust information of environmental microbial communities Recent uses in plant protection research include examination of effects of pesticides and biocontrol agents on microbial populations soil disease suppression plant rhizosphere communities microbemineral interactions microbeinsect interactions insect microbiota predator prey studies and community responses to changing farming practices

2005 ◽  
Vol 71 (7) ◽  
pp. 3928-3934 ◽  
Author(s):  
Mamie Nozawa-Inoue ◽  
Kate M. Scow ◽  
Dennis E. Rolston

ABSTRACT Perchlorate contamination is a concern because of the increasing frequency of its detection in soils and groundwater and its presumed inhibitory effect on human thyroid hormone production. Although significant perchlorate contamination occurs in the vadose (unsaturated) zone, little is known about perchlorate biodegradation potential by indigenous microorganisms in these soils. We measured the effects of electron donor (acetate and hydrogen) and nitrate addition on perchlorate reduction rates and microbial community composition in microcosm incubations of vadose soil. Acetate and hydrogen addition enhanced perchlorate reduction, and a longer lag period was observed for hydrogen (41 days) than for acetate (14 days). Initially, nitrate suppressed perchlorate reduction, but once perchlorate started to be degraded, the process was stimulated by nitrate. Changes in the bacterial community composition were observed in microcosms enriched with perchlorate and either acetate or hydrogen. Denaturing gradient gel electrophoresis analysis and partial sequencing of 16S rRNA genes recovered from these microcosms indicated that formerly reported perchlorate-reducing bacteria were present in the soil and that microbial community compositions were different between acetate- and hydrogen-amended microcosms. These results indicate that there is potential for perchlorate bioremediation by native microbial communities in vadose soil.


2021 ◽  
Vol 9 (4) ◽  
pp. 816
Author(s):  
Matthew G. Links ◽  
Tim J. Dumonceaux ◽  
E. Luke McCarthy ◽  
Sean M. Hemmingsen ◽  
Edward Topp ◽  
...  

Background. The molecular profiling of complex microbial communities has become the basis for examining the relationship between the microbiome composition, structure and metabolic functions of those communities. Microbial community structure can be partially assessed with “universal” PCR targeting taxonomic or functional gene markers. Increasingly, shotgun metagenomic DNA sequencing is providing more quantitative insight into microbiomes. However, both amplicon-based and shotgun sequencing approaches have shortcomings that limit the ability to study microbiome dynamics. Methods. We present a novel, amplicon-free, hybridization-based method (CaptureSeq) for profiling complex microbial communities using probes based on the chaperonin-60 gene. Molecular profiles of a commercially available synthetic microbial community standard were compared using CaptureSeq, whole metagenome sequencing, and 16S universal target amplification. Profiles were also generated for natural ecosystems including antibiotic-amended soils, manure storage tanks, and an agricultural reservoir. Results. The CaptureSeq method generated a microbial profile that encompassed all of the bacteria and eukaryotes in the panel with greater reproducibility and more accurate representation of high G/C content microorganisms compared to 16S amplification. In the natural ecosystems, CaptureSeq provided a much greater depth of coverage and sensitivity of detection compared to shotgun sequencing without prior selection. The resulting community profiles provided quantitatively reliable information about all three domains of life (Bacteria, Archaea, and Eukarya) in the different ecosystems. The applications of CaptureSeq will facilitate accurate studies of host-microbiome interactions for environmental, crop, animal and human health. Conclusions: cpn60-based hybridization enriched for taxonomically informative DNA sequences from complex mixtures. In synthetic and natural microbial ecosystems, CaptureSeq provided sequences from prokaryotes and eukaryotes simultaneously, with quantitatively reliable read abundances. CaptureSeq provides an alternative to PCR amplification of taxonomic markers with deep community coverage while minimizing amplification biases.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 865
Author(s):  
Lantian Su ◽  
Xinxin Liu ◽  
Guangyao Jin ◽  
Yue Ma ◽  
Haoxin Tan ◽  
...  

In recent decades, wild sable (Carnivora Mustelidae Martes zibellina) habitats, which are often natural forests, have been squeezed by anthropogenic disturbances such as clear-cutting, tilling and grazing. Sables tend to live in sloped areas with relatively harsh conditions. Here, we determine effects of environmental factors on wild sable gut microbial communities between high and low altitude habitats using Illumina Miseq sequencing of bacterial 16S rRNA genes. Our results showed that despite wild sable gut microbial community diversity being resilient to many environmental factors, community composition was sensitive to altitude. Wild sable gut microbial communities were dominated by Firmicutes (relative abundance 38.23%), followed by Actinobacteria (30.29%), and Proteobacteria (28.15%). Altitude was negatively correlated with the abundance of Firmicutes, suggesting sable likely consume more vegetarian food in lower habitats where plant diversity, temperature and vegetation coverage were greater. In addition, our functional genes prediction and qPCR results demonstrated that energy/fat processing microorganisms and functional genes are enriched with increasing altitude, which likely enhanced metabolic functions and supported wild sables to survive in elevated habitats. Overall, our results improve the knowledge of the ecological impact of habitat change, providing insights into wild animal protection at the mountain area with hash climate conditions.


2002 ◽  
Vol 68 (4) ◽  
pp. 1569-1575 ◽  
Author(s):  
R. Michael Lehman ◽  
Seán P. O'Connell

ABSTRACT Free-living and surface-associated microbial communities in sand-packed columns perfused with groundwater were compared by examination of compositional and functional characteristics. The composition of the microbial communities was assessed by bulk DNA extraction, PCR amplification of 16S ribosomal DNA fragments, separation of these fragments by denaturing gradient gel electrophoresis, and sequence analysis. Community function was assessed by measurement of β-glucosidase and aminopeptidase extracellular enzyme activities. Free-living populations in the aqueous phase exhibited a greater diversity of phylotypes than populations associated with the solid phase. The attached bacterial community displayed significantly greater β-glucosidase and aminopeptidase enzyme activities per volume of porous medium than those of the free-living community. On a per-cell basis, the attached community had a significantly higher cell-specific aminopeptidase enzyme activity (1.07 × 10−7 nmol cell−1 h−1) than the free-living community (5.02 × 10−8 nmol cell−1 h−1). Conversely, the free-living community had a significantly higher cell-specific β-glucosidase activity (1.92 × 10−6 nmol cell−1 h−1) than the surface-associated community (6.08 × 10−7 nmol cell−1 h−1). The compositional and functional differences observed between these two communities may reflect different roles for these distinct but interacting communities in the decomposition of natural organic matter or biodegradation of xenobiotics in aquifers.


2000 ◽  
Vol 66 (7) ◽  
pp. 2906-2913 ◽  
Author(s):  
Nico Boon ◽  
Johan Goris ◽  
Paul De Vos ◽  
Willy Verstraete ◽  
Eva M. Top

ABSTRACT A strain identified as Comamonas testosteroni I2 was isolated from activated sludge and found to be able to mineralize 3-chloroaniline (3-CA). During the mineralization, a yellow intermediate accumulated temporarily, due to the distalmeta-cleavage of chlorocatechol. This strain was tested for its ability to clean wastewater containing 3-CA upon inoculation into activated sludge. To monitor its survival, the strain was chromosomally marked with the gfp gene and designated I2gfp. After inoculation into a lab-scale semicontinuous activated-sludge (SCAS) system, the inoculated strain maintained itself in the sludge for at least 45 days and was present in the sludge flocs. After an initial adaptation period of 6 days, complete degradation of 3-CA was obtained during 2 weeks, while no degradation at all occurred in the noninoculated control reactor. Upon further operation of the SCAS system, only 50% 3-CA removal was observed. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes revealed a dynamic change in the microbial community structure of the activated sludge. The DGGE patterns of the noninoculated and the inoculated reactors evolved after 7 days to different clusters, which suggests an effect of strain inoculation on the microbial community structure. The results indicate that bioaugmentation, even with a strain originating from that ecosystem and able to effectively grow on a selective substrate, is not permanent and will probably require regular resupplementation.


2010 ◽  
Vol 56 (4) ◽  
pp. 352-355 ◽  
Author(s):  
Junmin Li ◽  
Zexin Jin ◽  
Binbin Yu

To explore changes in the structure and diversity of activated sludge-derived microbial communities during adaptation to gradual increases in the concentration of wastewater, RAPD–PCR and the combination of PCR amplification of 16S rRNA genes with denaturing gradient gel electrophoresis (DGGE) analysis were used. In bacterial communities exposed to 0%, 5%, 10%, 20%, or 40% wastewater, there were 27, 25, 18, 17 and 16 bands, respectively, based on DGGE data, while there were 69, 83, 97, 86, and 88 bands, respectively, based on RAPD data. The community similarity index among bacterial communities during the process of adaptation to different concentrations of wastewater was different based on DGGE and RAPD data. Based on DGGE and RAPD profiles, the Shannon–Weiner and Simpson’s diversity indices decreased sharply upon exposure to 10% wastewater, indicating that 10% wastewater might be a critical point at which the growth of bacteria could be significantly inhibited and the genotypic diversity could change. This indicated that changes in structure and diversity might have an inhibitory effect on the toxicity of organic matter and that selection and adaptation could play important roles in the changes.


2005 ◽  
Vol 71 (11) ◽  
pp. 6986-6997 ◽  
Author(s):  
Mark Skidmore ◽  
Suzanne P. Anderson ◽  
Martin Sharp ◽  
Julia Foght ◽  
Brian D. Lanoil

ABSTRACT Viable microbes have been detected beneath several geographically distant glaciers underlain by different lithologies, but comparisons of their microbial communities have not previously been made. This study compared the microbial community compositions of samples from two glaciers overlying differing bedrock. Bulk meltwater chemistry indicates that sulfide oxidation and carbonate dissolution account for 90% of the solute flux from Bench Glacier, Alaska, whereas gypsum/anhydrite and carbonate dissolution accounts for the majority of the flux from John Evans Glacier, Ellesmere Island, Nunavut, Canada. The microbial communities were examined using two techniques: clone libraries and dot blot hybridization of 16S rRNA genes. Two hundred twenty-seven clones containing amplified 16S rRNA genes were prepared from subglacial samples, and the gene sequences were analyzed phylogenetically. Although some phylogenetic groups, including the Betaproteobacteria, were abundant in clone libraries from both glaciers, other well-represented groups were found at only one glacier. Group-specific oligonucleotide probes were developed for two phylogenetic clusters that were of particular interest because of their abundance or inferred biochemical capabilities. These probes were used in quantitative dot blot hybridization assays with a range of samples from the two glaciers. In addition to shared phyla at both glaciers, each glacier also harbored a subglacial microbial population that correlated with the observed aqueous geochemistry. These results are consistent with the hypothesis that microbial activity is an important contributor to the solute flux from glaciers.


2017 ◽  
Vol 83 (11) ◽  
Author(s):  
Ryan A. Blaustein ◽  
Graciela L. Lorca ◽  
Julie L. Meyer ◽  
Claudio F. Gonzalez ◽  
Max Teplitski

ABSTRACTStable associations between plants and microbes are critical to promoting host health and productivity. The objective of this work was to test the hypothesis that restructuring of the core microbiota may be associated with the progression of huanglongbing (HLB), the devastating citrus disease caused byLiberibacter asiaticus,Liberibacter americanus, andLiberibacter africanus. The microbial communities of leaves (n= 94) and roots (n= 79) from citrus trees that varied by HLB symptom severity, cultivar, location, and season/time were characterized with Illumina sequencing of 16S rRNA genes. The taxonomically rich communities contained abundant core members (i.e., detected in at least 95% of the respective leaf or root samples), some overrepresented site-specific members, and a diverse community of low-abundance variable taxa. The composition and diversity of the leaf and root microbiota were strongly associated with HLB symptom severity and location; there was also an association with host cultivar. The relative abundance ofLiberibacterspp. among leaf microbiota positively correlated with HLB symptom severity and negatively correlated with alpha diversity, suggesting that community diversity decreases as symptoms progress. Network analysis of the microbial community time series identified a mutually exclusive relationship betweenLiberibacterspp. and members of theBurkholderiaceae,Micromonosporaceae, andXanthomonadaceae. This work confirmed several previously described plant disease-associated bacteria, as well as identified new potential implications for biological control. Our findings advance the understanding of (i) plant microbiota selection across multiple variables and (ii) changes in (core) community structure that may be a precondition to disease establishment and/or may be associated with symptom progression.IMPORTANCEThis study provides a comprehensive overview of the core microbial community within the microbiomes of plant hosts that vary in extent of disease symptom progression. With 16S Illumina sequencing analyses, we not only confirmed previously described bacterial associations with plant health (e.g., potentially beneficial bacteria) but also identified new associations and potential interactions between certain bacteria and an economically important phytopathogen. The importance of core taxa within broader plant-associated microbial communities is discussed.


2012 ◽  
Vol 58 (9) ◽  
pp. 1135-1151 ◽  
Author(s):  
P.G. Medihala ◽  
J.R. Lawrence ◽  
G.D.W. Swerhone ◽  
D.R. Korber

Relatively little is known regarding the spatial variability of microbial communities in aquifers where well fouling is an issue. In this study 2 water wells were installed in an alluvial aquifer located adjacent to the North Saskatchewan River and an associated piezometer network developed to facilitate the study of microbial community structure, richness, and diversity. Carbon utilization data analysis revealed reduced microbial activity in waters collected close to the wells. Functional PCR and quantitative PCR analysis indicated spatial variability in the potential for iron-, sulphate-, and nitrate-reducing activity at all locations in the aquifer. Denaturing gradient gel electrophoresis analysis of aquifer water samples using principal components analyses indicated that the microbial community composition was spatially variable, and denaturing gradient gel electrophoresis sequence analysis revealed that bacteria belonging to the genera Acidovorax , Rhodobacter , and Sulfuricurvum were common throughout the aquifer. Shannon’s richness (H′) and Pielou’s evenness (J′) indices revealed a varied microbial diversity (H′ = 1.488–2.274) and an even distribution of microbial communities within the aquifer (J′ = 0.811–0.917). Overall, these analyses revealed that the aquifer’s microbial community varied spatially in terms of composition, richness, and metabolic activity. Such information may facilitate the diagnosis, prevention, and management of fouling.


2001 ◽  
Vol 67 (10) ◽  
pp. 4619-4629 ◽  
Author(s):  
Wilfred F. M. Röling ◽  
Boris M. van Breukelen ◽  
Martin Braster ◽  
Bin Lin ◽  
Henk W. van Verseveld

ABSTRACT Knowledge about the relationship between microbial community structure and hydrogeochemistry (e.g., pollution, redox and degradation processes) in landfill leachate-polluted aquifers is required to develop tools for predicting and monitoring natural attenuation. In this study analyses of pollutant and redox chemistry were conducted in parallel with culture-independent profiling of microbial communities present in a well-defined aquifer (Banisveld, The Netherlands). Degradation of organic contaminants occurred under iron-reducing conditions in the plume of pollution, while upstream of the landfill and above the plume denitrification was the dominant redox process. Beneath the plume iron reduction occurred. Numerical comparison of 16S ribosomal DNA (rDNA)-based denaturing gradient gel electrophoresis (DGGE) profiles of Bacteria andArchaea in 29 groundwater samples revealed a clear difference between the microbial community structures inside and outside the contaminant plume. A similar relationship was not evident in sediment samples. DGGE data were supported by sequencing cloned 16S rDNA. Upstream of the landfill members of the β subclass of the class Proteobacteria(β-proteobacteria) dominated. This group was not encountered beneath the landfill, where gram-positive bacteria dominated. Further downstream the contribution of gram-positive bacteria to the clone library decreased, while the contribution of δ-proteobacteria strongly increased and β-proteobacteria reappeared. The β-proteobacteria (Acidovorax,Rhodoferax) differed considerably from those found upstream (Gallionella, Azoarcus). Direct comparisons of cloned 16S rDNA with bands in DGGE profiles revealed that the data from each analysis were comparable. A relationship was observed between the dominant redox processes and the bacteria identified. In the iron-reducing plume members of the familyGeobacteraceae made a strong contribution to the microbial communities. Because the only known aromatic hydrocarbon-degrading, iron-reducing bacteria areGeobacter spp., their occurrence in landfill leachate-contaminated aquifers deserves more detailed consideration.


Sign in / Sign up

Export Citation Format

Share Document