scholarly journals Human Gut Microbiome Metabolism and Autism Spectrum Disorder

2020 ◽  
Vol 7 (2) ◽  
Author(s):  
Martin Noguera
Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 688
Author(s):  
Abdulkadir Yusif Maigoro ◽  
Soojin Lee

The link between autism spectrum disorder (ASD) and the gut microbiome has received much attention, with special focus on gut–brain-axis immunological imbalances. Gastrointestinal problems are one of the major symptoms of ASD and are thought to be related to immune dysregulation. Therefore, in silico analysis was performed on mined data from 36 individuals with ASD and 21 control subjects, with an emphasis on lipid A endotoxin-producing bacteria and their lipopolysaccharide (LPS) metabolic pathways. Analysis of enzyme distribution among the 15 most abundant genera in both groups revealed that almost all these genera utilized five early-stage enzymes responsible for catalyzing the nine conserved lipid A synthesis steps. However, Haemophilus and Escherichia, which were significantly more abundant in individuals with ASD than in the control subjects, possess a complete set of essential lipid A synthesis enzymes. Furthermore, the 10 genera with the greatest increase in individuals with ASD showed high potential for producing late-stage lipid A products. Collectively, these results suggested that the synthesis rate of immunogenic LPS end products is likely to increase in individuals with ASD, which may be related to their gastrointestinal symptoms and elevated inflammatory conditions.


Gut ◽  
2021 ◽  
pp. gutjnl-2020-324015
Author(s):  
Yating Wan ◽  
Tao Zuo ◽  
Zhilu Xu ◽  
Fen Zhang ◽  
Hui Zhan ◽  
...  

ObjectiveThe gut microbiota has been suggested to play a role in autism spectrum disorder (ASD). We postulate that children with ASD harbour an altered developmental profile of the gut microbiota distinct from that of typically developing (TD) children. Here, we aimed to characterise compositional and functional alterations in gut microbiome in association with age in children with ASD and to identify novel faecal bacterial markers for predicting ASD.DesignWe performed deep metagenomic sequencing in faecal samples of 146 Chinese children (72 ASD and 74 TD children). We compared gut microbial composition and functions between children with ASD and TD children. Candidate bacteria markers were identified and validated by metagenomic analysis. Gut microbiota development in relation to chronological age was assessed using random forest model.ResultsASD and chronological age had the most significant and largest impacts on children’s faecal microbiome while diet showed no correlation. Children with ASD had significant alterations in faecal microbiome composition compared with TD children characterised by increased bacterial richness (p=0.021) and altered microbiome composition (p<0.05). Five bacterial species were identified to distinguish gut microbes in ASD and TD children, with areas under the receiver operating curve (AUC) of 82.6% and 76.2% in the discovery cohort and validation cohort, respectively. Multiple neurotransmitter biosynthesis related pathways in the gut microbiome were depleted in children with ASD compared with TD children (p<0.05). Developing dynamics of growth-associated gut bacteria (age-discriminatory species) seen in TD children were lost in children with ASD across the early-life age spectrum.ConclusionsGut microbiome in Chinese children with ASD was altered in composition, ecological network and functionality compared with TD children. We identified novel bacterial markers for prediction of ASD and demonstrated persistent underdevelopment of the gut microbiota in children with ASD which lagged behind their respective age-matched peers.


2020 ◽  
Vol 70 (6) ◽  
pp. 887-896 ◽  
Author(s):  
Shwikar AbdelSalam Ahmed ◽  
Azza Mahmoud Elhefnawy ◽  
Hanan Galal Azouz ◽  
Yara Safwat Roshdy ◽  
Mona Hamdy Ashry ◽  
...  

2018 ◽  
Vol 10 (4) ◽  
pp. 205-212 ◽  
Author(s):  
Ashraf Mohamadkhani

The brain-intestinal axis concept describes the communication between the intestinal microbiota as an ecosystem of a number of dynamic microorganisms and the brain. The composition of the microbial community of the human gut is important for human health by influencing the total metabolomic profile. In children with autism spectrum disorder (ASD), the composition of the fecal microbiota and their metabolic products has a different configuration of the healthy child. An imbalance in the metabolite derived from the microbiota in children with ASD affect brain development and social behavior. In this article, we review recent discoveries about intestinal metabolites derived from microbiota based on high-yield molecular studies in children with ASD as part of the "intestinal brain axis".


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2128 ◽  
Author(s):  
Xuejun Kong ◽  
Jun Liu ◽  
Murat Cetinbas ◽  
Ruslan Sadreyev ◽  
Madelyn Koh ◽  
...  

Autism Spectrum Disorder (ASD) is a complex neurological and developmental disorder characterized by behavioral and social impairments as well as multiple co-occurring conditions, such as gastrointestinal abnormalities, dental/periodontal diseases, and allergies. The etiology of ASD likely involves interaction between genetic and environmental factors. Recent studies suggest that oral and gut microbiome play important roles in the pathogenesis of inflammation, immune dysfunction, and disruption of the gut–brain axis, which may contribute to ASD pathophysiology. The majority of previous studies used unrelated neurotypical individuals as controls, and they focused on the gut microbiome, with little attention paid to the oral flora. In this pilot study, we used a first degree-relative matched design combined with high fidelity 16S rRNA (ribosomal RNA) gene amplicon sequencing in order to characterize the oral and gut microbiotas of patients with ASD compared to neurotypical individuals, and explored the utility of microbiome markers for ASD diagnosis and subtyping of clinical comorbid conditions. Additionally, we aimed to develop microbiome biomarkers to monitor responses to a subsequent clinical trial using probiotics supplementation. We identified distinct features of gut and salivary microbiota that differed between ASD patients and neurotypical controls. We next explored the utility of some differentially enriched markers for ASD diagnosis and examined the association between the oral and gut microbiomes using network analysis. Due to the tremendous clinical heterogeneity of the ASD population, we explored the relationship between microbiome and clinical indices as an attempt to extract microbiome signatures assocociated with clinical subtypes, including allergies, abdominal pain, and abnormal dietary habits. The diagnosis of ASD currently relies on psychological testing with potentially high subjectivity. Given the emerging role that the oral and gut microbiome plays in systemic diseases, our study will provide preliminary evidence for developing microbial markers that can be used to diagnose or guide treatment of ASD and comorbid conditions. These preliminary results also serve as a starting point to test whether altering the oral and gut microbiome could improve co-morbid conditions in patients with ASD and further modify the core symptoms of ASD.


Gut Microbes ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 453-464 ◽  
Author(s):  
María Fernanda Zurita ◽  
Paúl A. Cárdenas ◽  
María Elena Sandoval ◽  
María Caridad Peña ◽  
Marco Fornasini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document