scholarly journals ДОСЛІДЖЕННЯ ПРОХОДЖЕННЯ УЛЬТРАЗВУКОВИХ ХВИЛЬ КРІЗЬ ДВОШАРОВИЙ МАТЕРІАЛ ІЗ СКЛАДНОЮ СТРУКТУРОЮ ПРИ КОНТРОЛІ ЙОГО ТЕХНОЛОГІЧНИХ ПАРАМЕТРІВ

Author(s):  
В. Г. Здоренко ◽  
С. В. Барилко ◽  
С. М. Лісовець ◽  
Д. О. Шипко

Investigate the passage of ultrasonic waves through a two-layer material with a complex structure with non-contact control of its technological parameters. A non-contact ultrasonic method was used in the work to control technological parameters of materials with a complex structure, which takes into account the attenuation of ultrasonic waves. It is substantiated that the attenuation of an ultrasonic signal for a material with significant pores during its transverse sounding can be neglected compared to attenuation in a material without through pores. The results of studies of the influence of the thickness of a material with pores on the amplitude ratios of ultrasonic waves are presented. The dependences of the amplitudes of ultrasonic waves are obtained, one of which passes through a two-layer continuous material, and the other passes through a two-layer material with pores, taking into account the dependence of their attenuation on the thickness of the material. In this work, we obtained the dependences of the phase shift of ultrasonic waves, which were reflected from a two-layer material without pores, and waves reflected from a two-layer material with pores, on the total thickness of the controlled material, if we compare the phase of these waves with incident vibrations. Also obtained are the dependences of the change in wave amplitudes over time for a pulsed ultrasonic signal passing through a controlled material. It is proposed to use a pulsed ultrasonic signal for operational non-contact control of technological parameters of bilayer materials with a complex structure. The analysis showed that the obtained expressions for pulsed ultrasonic signals that can interact with porous materials can be used to create new methods and means of non-destructive non-contact control of technological parameters of materials with a complex structure. The aforementioned will make it possible to create complex integrated and universal contactless control devices for various technological parameters for composite materials with pores, which today are subjected only to destructive contact control, which does not allow operational monitoring directly at the plant.

Author(s):  
В. Г. Здоренко ◽  
С. В. Барилко ◽  
С. М. Лісовець ◽  
Д. О. Шипко

Research of attenuation of ultrasonic waves in various single-layer materials with available pores of different sizes changes in this work. The above is necessary for the possibility of creating non-contact means of ultrasonic testing of such materials. In the work to analyze the processes of interaction of ultrasonic waves with single-layer materials and various changes depending on the thickness or basis weight of the material. Expressions are given for the modules of the complex coefficient of transmission and reflection of ultrasonic waves from single-layer materials with small pores, as well as from textile single-layer materials with through pores, through which most of the vibrations pass. The dependences of relative changes in the amplitude attenuation of waves on the oscillation frequency, thickness and basis weight of the material are given. It is shown that the attenuation of the amplitude of ultrasonic waves that interact with single-layer materials with small pores, and the damping of vibrations for single-layer textile fabrics can be very different from each other. This difference is caused by the bending of part of the sound waves of the fibers of textile fabrics with through pores during the interaction of vibrations. The dependences of the relative changes in the difference of the modules with and without attenuation are obtained for the complex reflection and transmission coefficients of ultrasonic waves. These vibrations interacting with single-layer materials with different pores are considered taking into account the frequency of ultrasonic waves, pore sizes, thickness or basis weight of the material itself. The obtained dependences for determining the attenuation of the amplitude of the probe ultrasonic waves on the structure, porosity of the material, its thickness or surface density. This will allow to create non-contact control tools for materials with complex internal structures and automatically configure them to change pore sizes, which can significantly affect the errors of such devices. The accuracy of the devices that will be tuned to the complex structure of the monolayer material being controlled will be affected precisely by the attenuation parameter of the probe oscillations. In the future, this line of research will make it possible to create non-contact methods and means of monitoring the technological parameters of various single-layer materials and integrate such devices and systems directly into the production process.


2021 ◽  
pp. 4-12
Author(s):  
V. G. Shevaldykin

Creeping ultrasonic waves have long been successfully used for flaw detection of near-surface and near-bottom zones of metal products. However, due to the fact that the creeping wave generates a lateral transverse wave directed into the metal volume at the third critical angle, it is also possible to test internal defects in principle. At known velocities of propagation of longitudinal and transverse waves in the metal, the third critical angle is easily calculated. Therefore, the time of propagation of the ultrasonic signal along any trajectory between points on the surface and in the volume of the metal can be calculated. Usually, creeping waves are used to test products of plane-parallel shape. There are no cases of their application on curved surfaces in the literature. It is possible that the creeping wave can also propagate over a concave surface. The aim of the article is to test experimentally new ways of using creeping waves. The propagation trajectories of the creeping and lateral transverse waves were studied on a steel plate. The time of passage of the ultrasonic signal along such trajectories of different lengths was measured, and the measurement results were compared with the calculated time values. The measured and calculated values coincided with accuracy sufficient for the coherent accumulation of echo signals that passed through the metal part of the path by the creeping wave and another part of the path by the lateral transverse wave.The propagation of the creeping wave over a concave surface was studied on a steel sample with cylindrical faces of different radii. As a result, it turned out that on a concave surface, the creeping wave propagates at the same speed of longitudinal waves as on a flat surface, but it decays much more strongly with distance. Studies have shown that creeping waves can be used in ultrasonic tomography, where a preliminary calculation of the propagation trajectories of ultrasonic signals is required. The propagation of creeping waves over concave surfaces extends the capabilities of the TOFD method to the area of intube testing


2013 ◽  
Vol 448-453 ◽  
pp. 2278-2285
Author(s):  
Yue Dong ◽  
Yong Qian ◽  
Hai Feng Ye ◽  
Xiu Chen Jiang

In order to study propagation process of partial discharge ultrasonic signal in power transformer, the finite element method is used for simulation modeling and calculation. Ultrasonic waves can be activated by partial discharges (PD) in power transformers. The ultrasonic method is used for evaluating the insulation condition of power transformers by analyzing the partial discharge signals information which is detected by AE sensors. Compared with other diagnostic methods the AE method causes relatively low disturbance, and measuring apparatus is simple and easy to use. This technique is noninvasive and immune to electromagnetic noise. Simulate partial discharge sources of different positions respectively. Achieved results indicate that the space and time distributions of the acoustic pressure depend on the induction position. Furthermore, a greater pressure gradient is observed in domains with higher speed of sound while the signal amplitude decays when it moves away from the PD source.


2004 ◽  
Vol 126 (4) ◽  
pp. 639-645 ◽  
Author(s):  
Francesco Aymerich ◽  
Massimiliano Pau

In this paper the application of an ultrasonic method to evaluate size and shape of the nominal contact area between two contacting bodies is studied. The technique is based on the analysis of the quota of the ultrasonic wave reflected by the interface, which may be related to the level of contact between the surfaces. A simple deconvolution procedure is applied to the raw ultrasonic data so as to remove the blurring effect introduced by the ultrasonic beam size. The ultrasonic data acquired on a simple sphere-plane contact interface are compared with those obtained by means of a commercial pressure sensitive film and the results are discussed to evaluate the capability of the ultrasonic technique to capture the main contact patch features correctly.


2002 ◽  
Vol 112 (5) ◽  
pp. 2242-2242
Author(s):  
Arnaud Tourin ◽  
Arnaud Derode ◽  
Victor Mamou ◽  
Mathias Fink ◽  
John Page ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1642 ◽  
Author(s):  
Zuohua Li ◽  
Lilin Zheng ◽  
Chaojun Chen ◽  
Zhili Long ◽  
Ying Wang

Grouted splice sleeve (GSS) connectors are mainly used in precast concrete structures. However, errors in manual operation during construction cause grouted defects in the GSS connector, which can lead to a negative effect on the overall mechanical properties of the structures. Owing to the complex structure of precast concrete members with a GSS connector, it is difficult to detect grouted defects effectively using traditional ultrasonic parameters. In this paper, a wavelet packet analysis algorithm was developed to effectively detect grouted defects using the ultrasonic method, and a verified experiment was carried out. Laboratory detection was performed on the concrete specimens with a GSS connector before grouting, in which the grouted defects were mimicked with five sizes in five GSS connectors of each specimen group. A simple and convenient ultrasonic detection system was developed, and the specimens were detected. According to the proposed grouted defect index, the results demonstrated that when the grouted defects reached certain sizes, the proposed method could detect the grouted defects effectively. The proposed method is effective and easy to implement at a construction site with simple instruments, and so provides an innovative method for grouted defects detection of precast concrete members.


Sign in / Sign up

Export Citation Format

Share Document