scholarly journals EXPERIENCE IN PRESERVING THE GENETIC DIVERSITY OF STONE FRUITS USING THE BORDER HEDGING TECHNOLOGY

2019 ◽  
Vol 180 (2) ◽  
pp. 7-11
Author(s):  
G. V. Eremin ◽  
T. A. Gasanova ◽  
V. G. Eremin ◽  
I. S. Chepinoga

Conservation of the world’s plant genetic resources is one of the most significant and relevant problems of mankind. At Krymsk Experimental Breeding Station of VIR, where the largest stone fruit plant genetic diversity in Russia is assembled (more than 5 thousand genotypes: cultivars and species, wild forms, distant hybrids and polyploids), a collection maintenance technology of ‘border hedging’ has been developed and successfully used. This method makes it quite economical (in terms of space reduction, simplification of the system of care for the storage garden, and decreasing the use of chemical protection agents) to maintain a large number of live accessions ex situ. The border hedging technology is based on a propagule nursery system that enables plants to grow longer than in conventional gardens, constantly keeping them in a state of active growth. The basic elements of this technology are dense arrangement of plants (intervals for high-growing plants: 4.0–5.0 m between rows, and 1.0–1.5 m in a row; for low-growing ones: 2.5 m between rows, and 0.5–1.0 m in a row) and annual pruning of shoots at a height of 1.0–1.2 m. Years of experience in using a denser planting pattern for collection garden maintenance helped to identify a number of most significant factors in this system, which make up the scientific basis of the technology for optimally efficient preservation of genotypes and their genetic compliance (representativeness). Among them are biological features of the in situ plant growth habit, including vigor, selection of rootstock or decision on own-root cultivation, layout of the plot, and maintenance system. If it is necessary to study the accessions in the garden where they are preserved in order to make their initial evaluation (approbation, morphological description, study of crop structure, biochemical or biotechnological assessment, analysis of resistance to biotic and abiotic stressors), the plants should not be pruned for 1–2 years. Upon completion of these works, the trees are coppiced again.

2012 ◽  
Vol 10 (3) ◽  
pp. 242-253 ◽  
Author(s):  
Holly Vincent ◽  
Roland von Bothmer ◽  
Helmut Knüpffer ◽  
Ahmed Amri ◽  
Jan Konopka ◽  
...  

To facilitate the updating ofin situandex situconservation strategies for wild taxa of the genusHordeumL., a combined ecogeographic survey and gap analysis was undertaken. The analysis was based on the Global Inventory of Barley Plant Genetic Resources held by ICARDA plus additional datasets, resulting in a database containing 17,131 wildHordeumaccessions. The analysis concluded that a genetic reserve should be established in the Mendoza Province of Argentina, as this is the most species-rich area globally forHordeum. A network of reserves should also be set up across the Fertile Crescent in Israel, Palestine, Syria, Jordan, Lebanon and Turkey to provide effective conservation within the centres of diversity for gene pools 1B (Hordeum vulgaresubsp.spontaneum(C. Koch) Thell.) and 2 (Hordeum bulbosumL.). The majority of the species were deemed under-collected, so further collecting missions are required worldwide where possible. Althoughex situandin situconservation strategies have been developed, there needs to be further investigation into the ecological environments thatHordeumspecies occupy to ensure that any adaptive traits expressed are fully conserved. Additionally, studies are required to characterize existing collections and test the viability of rare species accessions held in genebanks to determine whether furtherex situcollections are required alongside the proposedin situconservation.


AGROFOR ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zoran MALETIC

Recently, highly productive breeds of various species of domestic animals have been used in livestock production, which has resulted in the destruction of indigenous breeds of domestic animals around the world, even in our area. This is the first reason why indigenous races and strains have been endangered. Another reason is that domestic, indigenous breeds were crossed with specialized breeds, which were imported, and in that way their genetic diversity was negatively affected. Resistance is lost, adaptation to the conditions in which they were created, the ability to survive in nature. Indigenous breeds of different species of domestic animals, which are recognized in the Republic of Srpska (BiH) are gatačko cattle and buša (cattle), Vlašić pramenka, Podveleška pramenka, Kupres pramenka (sheep), domestic Balkan horned goat (goats), Bosnian mountain horse (horses), mangulica (pigs) and pogrmuša hen or živičarka hen (poultry). By acceding to international conventions, BiH /Republic of Srpska has committed itself to establishing a system of measures that will enable the conservation of biological diversity and the protection of indigenous and endangered breeds of domestic animals. The choice of a strategy for the conservation of diversity, the establishment of an adequate conservation scheme, and the implementation of a conservation strategy are some of the key elements of any process for the conservation of genetic diversity. Preservation of autochthonous and protected breeds of domestic animals is possible through preservation in the original environment (in situ) and preservation outside the original environment (ex situ). There is a possibility of combining these models of conservation of animal genetic resources.


Author(s):  
Paula Bramel ◽  

This chapter reviews the key issues and challenges facing genebanks in preserving crop genetic diversity ex situ. Local crop genetic diversity is challenged with changes in land use, urbanization, land degradation, changes in agricultural practises, availability of improved varieties, changes in market preference, and the impact of climate change. Efforts have been made to secure plant genetic resources ex situ for future use but there are significant issues related to cost effective, efficient, secure, rational, and sustainable long-term ex situ conservation. It begins by addressing issues for the composition of ex situ collections and moves on to discuss issues for routine operations for conservation. The chapter also highlights issues for the use of conserved genetic resources, before concluding with a summary of why the development of sustainable genebank systems is so important.


Author(s):  
Nolipher Khaki Mponya ◽  
Tembo Chanyenga ◽  
Joana Magos Brehm ◽  
Nigel Maxted

Abstract The study analysed the conservation gaps of the priority crop wild relatives (CWR) taxa for Malawi in order to contribute to the development of a harmonized conservation strategy that helps secure the priority CWR under in situ and ex situ. We used taxa distribution modelling, complementarity analysis and ecogeographic land characterization map to analyse spatial diversity and distribution of 123 priority taxa across different adaptive scenarios. We identified areas of observed and predicted richness, the minimum number of protected areas (PAs) that conserve the broadest ecogeographic diversity in situ and the minimum number of grid cells that capture highest diversity outside PAs to recommend the establishment of genetic reserves. We then analysed the representativeness of the conserved ecogeographic diversity of target taxa in ex situ collections to identify ex situ conservation gaps and advise for priority areas for ex situ collections. For the 123 taxa, 70.7% of the total diversity occurs in 36 PAs with 66.8% of the diversity captured in only 10 complementary PAs. Outside PAs, the broadest diversity was conserved in three grid cells of size 5 × 5 km. Fifty-three of 123 taxa have ex situ collections with only three taxa having ex situ collections at the Malawi Plant Genetic Resources Centre. The findings of this study will guide formulation of conservation actions for the priority taxa as well as lobbying for active conservation of the same under in situ and ex situ.


Author(s):  
Jane Muthoni ◽  
Hussein Shimelis ◽  
Rob Melis

Plant genetic resources (PGRs) play an important role in agriculture, environment protection, cultural property and trade; they need to be conserved. There are two fundamental approaches for the conservation of PGRs: in situ and ex situ. In situ conservation is the conservation of ecosystems and natural habitats and the maintenance and recovery of viable populations of species in their natural surroundings. Ex situ preservation is the storage of seeds or plant materials under artificial conditions to maintain their long term viability and availability for use. Genebanks employ seed storage, field collections of living plants and in vitro storage (tissue culture or cryopreservation) for ex situ preservation of PGR. Storage of orthodox seeds, which are tolerant to low moisture content and low temperatures at appropriate temperature and humidity, is the most convenient ex situ conservation method. Plants that produce recalcitrant seeds or non-viable seeds are conserved in field genebanks as well as in-vitro in slow growth media for short-to-medium term and cryopreservation in liquid nitrogen at -1960C for long-term periods. Cryopreservation is very expensive and needs trained personnel; this could explain why this method is rarely used for conservation of plant genetic resources in most developing countries. Potato tubers are bulky and highly perishable; the crop is generally conserved as clones either in field genebanks (with annual replanting), in-vitro conservation in slow growth media for short-to-medium term and cryopreservation for long term. Field genebanks are expensive to maintain and the crop is exposed to many dangers; hence, cryopreservation is the only feasible method for long term conservation. However, given the high cost of cryopreservation, long-term conservation of potato genetic resources is poorly developed in most resource-poor countries leading to high rates of genetic erosion. This paper looks into the various methods that that can be applied to conserve potato genetic resources and the status of conservation of potatoes in major genebanks and some countries.


Author(s):  
Jai Sunder ◽  
S. Jeyakumar ◽  
S. P. Yadav ◽  
A. K. De ◽  
A. Kundu ◽  
...  

Background: Teressa goat is an indigenous goat breed of Andaman and Nicobar Islands. These goats are mainly distributed in the Nicobar group of islands, however, sparse population is also available in the Andaman Islands. In order to understand the genetic diversity and variation among the population of Teressa goat, the studies on the molecular characterization was done by using microsatellite molecular markers. Methods: Randomly a total of 48 blood samples were collected different areas of the Nicobar Islands representing the breeding tract of the Teressa goat. Based on the guidelines of ISAG and FAO, a total of 15 recommended microsatellite markers were selected for the microsatellite analysis study. The data were analysed to study the diversity analysis at each locus by using GENETIX software package. Bottleneck hypothesis was also studied by using BOTTLENECK 1.2.01 and FIS, FIT and FIT values were calculated and heterozygosity deficiency at each locus using FSTAT software. Result: A total of 50 genotypes were observed across the 15 loci. The number of genotype varied between (MAF70; SRCRSP3) 1 and 6 (SRCRSP15). The effective number of alleles (Ne) varied from 2 to 6.98 in Teressa goat. Shannon’s Information Index (I) value was found to be high (1.1856±0.4369), it indicated that the level of diversity among the population of the Teressa goat is high. All the values of FIS obtained were negative which is suggestive of no inbreeding within the populations and the animals were outbred. The mode-shift test indicated the genetic bottleneck in Teressa and needs greater attention towards in situ/ex situ conservation. The present study provides the valuable information about the genetic makeup of the Teressa goat, however, detail study is required to carry out to study the important traits linked with production for further utilization of this breed.


2005 ◽  
Vol 83 (10) ◽  
pp. 1248-1256 ◽  
Author(s):  
J. López-Pujol ◽  
F.-M. Zhang ◽  
S. Ge

Allozyme electrophoresis was used to evaluate the levels of genetic diversity and population genetic structure of the critically endangered Clematis acerifolia Maximowicz (Ranunculaceae), a narrow endemic species in China. On the basis of variation at 19 putative loci in nine populations covering the entire distribution of this species, low values of genetic diversity were detected (P = 20.5%, A = 1.27, and He = 0.072). A significant deficiency of heterozygotes was found in all populations. Most loci showed deviations from the Hardy–Weinberg equilibrium, probably as a result of population genetic structuring. The high genetic divergence among populations (FST = 0.273) can be interpreted as an effect of the extinction of local populations and genetic drift within extant populations, and has probably been enhanced by habitat fragmentation in recent decades. Threats to this species are mainly anthropogenic (road works, construction of holiday resorts, and extraction activities), although stochastic risks cannot be ignored. Therefore, to preserve extant genetic variation of C. acerifolia, in situ strategies, such as the preservation of its habitat or at least the most diverse populations, and ex situ measures, such as the collection and long-term storage of seeds, should be adopted.


2011 ◽  
Vol 9 (3) ◽  
pp. 411-422 ◽  
Author(s):  
M. R. Ahuja

This study reviews the various conservation strategies applied to the four redwood species, namely coast redwood (Sequoia sempervirens), Sierra redwood or giant sequoia (Sequoiadendron giganteum), dawn redwood (Metasequoia glyptostroboides) and South American redwood or alerce (Fitzroya cupressoides), which are endemic in the USA, China and South America, respectively. All four redwood genera belong to the family Cupressaceae; they are monospecific, share a number of common phenotypic traits, including red wood, and are threatened in their native ranges due to human activity and a changing climate. Therefore, the management objective should be to conserve representative populations of the native species with as much genetic diversity as possible for their future survival. Those representative populations exhibiting relatively high levels of genetic diversity should be selected for germplasm preservation and monitored during the conservation phase by using molecular markers. In situ and ex situ strategies for the preservation of germplasm of the redwoods are discussed in this study. A holistic in situ gene conservation strategy calls for the regeneration of a large number of diverse redwood genotypes that exhibit adequate levels of neutral and adaptive genetic variability, by generative and vegetative methods for their preservation and maintenance in their endemic locations. At the same time, it would be desirable to conserve the redwoods in new ex situ reserves, away from their endemic locations with similar as well as different environmental conditions for testing their growth and survival capacities. In addition, other ex situ strategies involving biotechnological approaches for preservation of seeds, tissues, pollen and DNA in genebanks should also be fully exploited in the face of global climate change.


2003 ◽  
Vol 1 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Toby Hodgkin ◽  
V. Ramanatha Rao ◽  
Angélica Cibrian-Jaramillo ◽  
Samy Gaiji

AbstractPlant genetic resources are conserved so that they can be used to improve crop plant pro- duction and in other ways. However, it is often asserted that use of ex situ conserved germplasm is inadequate and that genetic diversity maintained in genebanks is underutilized. In part, this reflects an incomplete recognition of what constitutes use of plant genetic resources, and of the many different ways in which material from genebanks contributes to improved agricultural production. Based on recent information from surveys of distribution of germplasm from genebanks, and from surveys of users, we suggest that the evidence indicates that there is substantial use of ex situ conserved materials for a wide range of different uses. We suggest that barriers to use of ex situ conserved germplasm may often result from a lack in numbers of users, and from limitations in capacity to effectively utilize the genetic diversity present in genebanks to reduce genetic vulnerability and increase sustainability in modern production systems.


Sign in / Sign up

Export Citation Format

Share Document