scholarly journals Resistance of synthetic hexaploid wheat to the leaf rust pathogen

2021 ◽  
Vol 182 (3) ◽  
pp. 125-136
Author(s):  
A. G. Khakimova ◽  
E. I. Gultyaeva ◽  
O. P. Mitrofanova

Background. One of the promising sources for enrichment of the common wheat (Triticum aestivum L.) gene pool with new alleles is synthetic hexaploid wheat (SHW), or allopolyploids from crossing tetraploid wheats (2n = 4x = 28, BBAA) with accessions of Aegilops tauschii Coss. (2n = 2x = 14, DD), and subsequent doubling of the chromosome number in the hybrids. Objectives of the study were to evaluate the SHW accessions from the VIR collection for resistance to Puccinia triticina Erikss. populations collected in Russia; genotype the accessions; and summarize information from the published sources concerning the resistance of the studied accessions to other harmful diseases and pests.Materials and methods. Resistance of 36 SHW accessions from the VIR collection to the populations of P. triticina was assessed in the laboratory and in the field, under artificial infection pressure, using the techniques developed by the Institute of Plant Protection. A phytopathological test and PCR markers were used to identify the Lr genes.Results and conclusion. The SHW accessions were characterized according to their resistance to the Russian populations of the wheat leaf rust pathogen. The sources of resistance in the phase of emergence and in adult plants were identified. The phytopathological test isolated three accessions with Lr23; the PCR marker of Lr21=Lr40 was found in 11 accessions, Lr39=Lr41 in 19, and Lr22a in 3. At the same time, k-65496, k-65515 and k-65517 had si multaneously Lr21=Lr40 and Lr39=Lr41, while k-65497, k-65503 and k-65508 had Lr22a and Lr39=Lr41. The analysis of published data showed that many of the studied SHW accessions were also resistant to other harmful diseases and insect pests, so they are of interest for further studying and possible use in domestic breeding.

1969 ◽  
Vol 11 (3) ◽  
pp. 639-647 ◽  
Author(s):  
E. R. Kerber ◽  
P. L. Dyck

The inheritance of seedling leaf rust resistance and several morphological characters derived from Aegilops squarrosa (2n = 14 = DD) was investigated in a synthetic hexaploid wheat. The hexaploid was obtained by combining the tetraploid component (2n = 28 = AABB) extracted from the common wheat cultivar Canthatch with Ae. squarrosa var. meyeri R.L. 5289.A major, partially dominant gene was identified that gives good resistance (type 0;1 reaction) to leaf rust races 1, 5, 9, 11, 15, 30, 58 and 126a. This gene was shown to be different from the resistance genes Lr1, Lr2, Lr3, Lr10, Lr16, Lr17 and Lr18. A minor second gene was also detected which gives resistance (type 2 reaction) to race 9 and slight resistance to some of the other races.Each of the characters purple coleoptile, non-waxy foliage, brown glumes, and non-free threshing (tenacious glumes) of the synthetic wheat was monogenically inherited. The gene for threshability may be different from other genetic systems known to affect this character. The gene for brown glumes was linked with the major gene for leaf rust resistance with a recombination value of 3.1 ± 1.1%. The genes for non-waxy foliage and non-free threshing were associated with an estimated linkage value of 15.1 ± 2.6%.The results effectively demonstrated the relative ease with which genetic variation may be incorporated into common hexaploid wheat from its ancestral diploid, Ae. squarrosa, by means of a synthetic hexaploid intermediary. The method avoids the difficulties and complications often encountered with the transfer of genes from more distantly related species which do not have a genome in common with T. aestivum.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Hai An Truong ◽  
Hyeri Lee ◽  
Masahiro Kishii ◽  
Suk Whan Hong ◽  
Hojoung Lee

Synthetic hexaploid wheat (SHW) is a valuable resource for breeding because it possesses more desirable traits, such as better yield and abiotic and biotic stress tolerance than common wheat. In this study, our group developed a SHW line, named ‘SynDT’, which has markedly better characteristics than Korean bread wheat ‘Keumkang’. The SynDT line is thermotolerant as it rapidly expresses heat shock proteins under heat stress. In addition, this line exhibits resistance to leaf rust by inducing the expression of antifungal enzymes, mainly chitinase, along with the rapid and high expression of pathogen-related genes. Moreover, it possesses the favorable traits of its parent wheat lines Triticum durum #24 and Aegilops tauschii #52. Therefore, the SynDT wheat line can be used as a breeding material for improving local common wheat cultivars.


2019 ◽  
Author(s):  
Volker Mohler ◽  
Michael Schmolke ◽  
Friedrich J. Zeller ◽  
Sai L.K. Hsam

SummarySeedling resistance to leaf rust available in the synthetic hexaploid wheat line Syn137 was characterized by means of cytogenetic and linkage mapping. Monosomic analysis located a single dominant gene for leaf rust resistance on chromosome 5D. Molecular mapping not only confirmed this location but also positioned the gene to the distal part of the long arm of chromosome 5D. A test of allelism showed that the gene, tentatively named LrSyn137, is independent but closely linked to Lr1. It appears that Syn137 is occasionally heterogeneous for Lr1 since the analysis of the Lr1-specific marker RGA567-5 in the mapping population indicated the presence of Lr1. Syn137 represents another source of genetic variation that can be useful for the diversification of leaf rust resistance in wheat cultivars.


1974 ◽  
Vol 16 (1) ◽  
pp. 137-144 ◽  
Author(s):  
G. G. Rowland ◽  
E. R. Kerber

Telocentrics of hexaploid wheat, Triticum aestivum spp. vulgare cv. Chinese Spring, were used to establish the chromosome arm location and crossover distance from the centromere of genes controlling characters introduced into synthetic hexaploid wheat (2n = 42 = AABBDD) from Aegilops squarrosa (2n = 14 = DD). The chromosome arm location and the crossover distance from the centromere of each gene studied are as follows: synthetic hexaploid RL 5404 — brown glumes (Rg2), 1DL, 13.3 ± 3.3%; tenacious glumes (Tg), 2Dα, 39.4 ± 4.9%; inhibitor of waxy foliage (W21), 2Dα, 52.5 ± 5.0%; adult-plant leaf rust resistance (Lr22), 2Dα, 63.6 ± 4.8%; purple coleoptile (Rc3), 7DS, 10.3 ± 2.8%; synthetic hexaploid RL 5406 — Rg2, 1DL, 1.7 ± 1.0%; Tg, 2Dα, 42.9 ± 4.6%; W21, 2Dα, 58.9 ± 4.6%; Rc3, 7DS, 9.8 ± 2.8%. A gene for seedling leaf rust resistance (Lr21) found in RL 5406 is located on chromosome 1D.


Genetics ◽  
2021 ◽  
Vol 217 (2) ◽  
Author(s):  
L E Puhl ◽  
J Crossa ◽  
S Munilla ◽  
P Pérez-Rodríguez ◽  
R J C Cantet

Abstract Cultivated bread wheat (Triticum aestivum L.) is an allohexaploid species resulting from the natural hybridization and chromosome doubling of allotetraploid durum wheat (T. turgidum) and a diploid goatgrass Aegilops tauschii Coss (Ae. tauschii). Synthetic hexaploid wheat (SHW) was developed through the interspecific hybridization of Ae. tauschii and T. turgidum, and then crossed to T. aestivum to produce synthetic hexaploid wheat derivatives (SHWDs). Owing to this founding variability, one may infer that the genetic variances of native wild populations vs improved wheat may vary due to their differential origin and evolutionary history. In this study, we partitioned the additive variance of SHW and SHWD with respect to their breed origin by fitting a hierarchical Bayesian model with heterogeneous covariance structure for breeding values to estimate variance components for each breed category, and segregation variance. Two data sets were used to test the proposed hierarchical Bayesian model, one from a multi-year multi-location field trial of SHWD and the other comprising the two species of SHW. For the SHWD, the Bayesian estimates of additive variances of grain yield from each breed category were similar for T. turgidum and Ae. tauschii, but smaller for T. aestivum. Segregation variances between Ae. tauschii—T. aestivum and T. turgidum—T. aestivum populations explained a sizable proportion of the phenotypic variance. Bayesian additive variance components and the Best Linear Unbiased Predictors (BLUPs) estimated by two well-known software programs were similar for multi-breed origin and for the sum of the breeding values by origin for both data sets. Our results support the suitability of models with heterogeneous additive genetic variances to predict breeding values in wheat crosses with variable ploidy levels.


Sign in / Sign up

Export Citation Format

Share Document