scholarly journals GEOCHEMISTRY OF MINERAL WATERS AND HYDROGENIC SEDIMENTS OF THE ANTONOV HYDROSULPHURIC MINERAL SPRING, SAKHALIN ISLAND

2020 ◽  
Vol 39 (6) ◽  
pp. 98-113
Author(s):  
G.A. Chelnokov ◽  
◽  
I.V. Bragin ◽  
I.A. Kharitonova ◽  
K.Yu. Bushkareva ◽  
...  

Original data on the isotopic and chemical composition of mineral waters, cold ground and surface waters, as well as hydrogenic deposits of the Antonovsky manifestation of hydrogen sulfide mineral waters (the coast of the Tatar Strait, Sakhalin Island) are provided in the article. For the first time, data on the content of oxygen and hydrogen isotopes in groundwaters and surface waters, the volumetric activity of radon and the rare-earth elements as well were obtained. Based on automatic monitoring of the physical parameters of the waters, their hydrogeological characteristics were determined and balneological properties were assessed. It has been determined that the mineral waters of the spring are weakly alkaline, hydrocarbonate-chloride calcium-sodium, with TDS of up to 1 g/l. According to isotope data, the genesis of waters is atmospheric, and the circulation time is less than 60 years. The gas composition is dominated by nitrogen of atmospheric genesis (δ15N = 0.0). High contents of organic carbon (Corg. = 56.6 mg/l) are explained by the processes of interaction of groundwaters with organic matter of water-bearing rocks. When organic matter decomposes in the presence of sulfates and without oxygen, hydrogen sulfide is released, giving rise to a number of intermediate and stable sulfur compounds in hydrogenic sediments and bacterial mats. Elemental, sulfide and sulfate forms of sulfur have been determined in the bottom sediments as well as new formations of the mineral spring, using electron microscopy. The interaction of waters with organic matter of rocks plays a significant role in the formation of the elemental composition of hydrogenic and biogenic deposits of the Antonovsky hydrogen sulphide mineral spring and their enrichment with such metals as Zn, Ge, As, Sr, Ba, U, and Th as well. A characteristic feature of mineral waters is the presence of a pronounced positive europium anomaly, which is typical for waters with low Eh values.

2020 ◽  
Vol 14 (6) ◽  
pp. 571-585
Author(s):  
G. A. Chelnokov ◽  
I. V. Bragin ◽  
N. A. Kharitonova ◽  
K. Yu. Bushkareva ◽  
V. Yu. Lavrushin ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 274
Author(s):  
Sara Mayo-Prieto ◽  
Alejandra J. Porteous-Álvarez ◽  
Sergio Mezquita-García ◽  
Álvaro Rodríguez-González ◽  
Guzmán Carro-Huerga ◽  
...  

Spain has ranked 6th on the harvested bean area and 8th in bean production in the European Union (EU). The soils of this area have mixed silt loam and sandy loam texture, with moderate clay content, neutral or acidic pH, rich in organic matter and low carbonate levels, providing beans with high water absorption capacity and better organoleptic qualities after cooking. Similar to other crops, it is attacked by some phytopathogens. Hitherto, chemical methods have been used to control these organisms. However, with the Reform of the Community Agrarian Policy in the EU, the number of authorized plant protection products has been reduced to prevail food security, as well as to be sustainable in the long term, giving priority to the non-chemical methods that use biological agents, such as Trichoderma. This study aimed to investigate the relative importance of various crop soil parameters in the adaptation of Trichoderma spp. autoclaved soils (AS) and natural soils (NS) from the Protected Geographical Indication (PGI) “Alubia La Bañeza—León” that were inoculated with Trichoderma velutinum T029 and T. harzianum T059 and incubated in a culture chamber at 25 °C for 15 days. Their development was determined by quantitative PCR. Twelve soil samples were selected and analyzed from the productive zones of Astorga, La Bañeza, La Cabrera, Esla-Campos and Páramo. Their physicochemical characteristics were different by zone, as the texture of soils ranged between sandy loam and silt loam and the pH between strongly acid and slightly alkaline, as well as the organic matter (OM) concentration between low and remarkably high. Total C and N concentrations and their ratio were between medium and high in most of the soils and the rest of the micronutrients had an acceptable concentration except for Paramo’s soil. Both Trichoderma species developed better in AS than in NS, T. velutinum T029 grew better with high levels of OM, total C, ratio C:N, P, K, Fe, and Zn than T. harzianum T059 in clay soils, with the highest values of cation exchange capacity (CEC), pH, Ca, Mg and Mn. These effects were validated by Canonical Correlation Analysis (CCA), texture, particularly clay concentration, OM, electrical conductivity (EC), and pH (physical parameters) and B and Cu (soil elements) are the main factors explaining the influence in the Trichoderma development. OM, EC, C:N ratio and Cu are the main soil characteristics that influence in T. velutinum T029 development and pH in the development of T. harzianum T059.


2013 ◽  
Vol 10 (5) ◽  
pp. 2945-2957 ◽  
Author(s):  
A. Dell'Anno ◽  
A. Pusceddu ◽  
C. Corinaldesi ◽  
M. Canals ◽  
S. Heussner ◽  
...  

Abstract. The bioavailability of organic matter in benthic deep-sea ecosystems, commonly used to define their trophic state, can greatly influence key ecological processes such as biomass production and nutrient cycling. Here, we assess the trophic state of deep-sea sediments from open slopes and canyons of the Catalan (NW Mediterranean) and Portuguese (NE Atlantic) continental margins, offshore east and west Iberia, respectively, by using a biomimetic approach based on enzymatic digestion of protein and carbohydrate pools. Patterns of sediment trophic state were analyzed in relation to increasing water depth, including repeated samplings over a 3 yr period in the Catalan margin. Two out of the three sampling periods occurred a few months after dense shelf water cascading events. The benthic deep-sea ecosystems investigated in this study were characterized by high amounts of bioavailable organic matter when compared to other deep-sea sediments. Bioavailable organic matter and its nutritional value were significantly higher in the Portuguese margin than in the Catalan margin, thus reflecting differences in primary productivity of surface waters reported for the two regions. Similarly, sediments of the Catalan margin were characterized by significantly higher food quantity and quality in spring, when the phytoplankton bloom occurs in surface waters, than in summer and autumn. Differences in the benthic trophic state of canyons against open slopes were more evident in the Portuguese than in the Catalan margin. In both continental margins, bioavailable organic C concentrations did not vary or increase with increasing water depth. Overall, our findings suggest that the intensity of primary production processes along with the lateral transfer of organic particles, even amplified by episodic events, can have a role in controlling the quantity and distribution of bioavailable organic detritus and its nutritional value along these continental margin ecosystems.


2010 ◽  
Vol 7 (12) ◽  
pp. 4083-4103 ◽  
Author(s):  
J. Para ◽  
P. G. Coble ◽  
B. Charrière ◽  
M. Tedetti ◽  
C. Fontana ◽  
...  

Abstract. Seawater samples were collected monthly in surface waters (2 and 5 m depths) of the Bay of Marseilles (northwestern Mediterranean Sea; 5°17'30" E, 43°14'30" N) during one year from November 2007 to December 2008 and studied for total organic carbon (TOC) as well as chromophoric dissolved organic matter (CDOM) optical properties (absorbance and fluorescence). The annual mean value of surface CDOM absorption coefficient at 350 nm [aCDOM(350)] was very low (0.10 ± 0.02 m−1) in comparison to values usually found in coastal waters, and no significant seasonal trend in aCDOM(350) could be determined. By contrast, the spectral slope of CDOM absorption (SCDOM) was significantly higher (0.023 ± 0.003 nm−1) in summer than in fall and winter periods (0.017 ± 0.002 nm−1), reflecting either CDOM photobleaching or production in surface waters during stratified sunny periods. The CDOM fluorescence, assessed through excitation emission matrices (EEMs), was dominated by protein-like component (peak T; 1.30–21.94 QSU) and marine humic-like component (peak M; 0.55–5.82 QSU), while terrestrial humic-like fluorescence (peak C; 0.34–2.99 QSU) remained very low. This reflected a dominance of relatively fresh material from biological origin within the CDOM fluorescent pool. At the end of summer, surface CDOM fluorescence was very low and strongly blue shifted, reinforcing the hypothesis of CDOM photobleaching. Our results suggested that unusual Rhône River plume eastward intrusion events might reach Marseilles Bay within 2–3 days and induce local phytoplankton blooms and subsequent fluorescent CDOM production (peaks M and T) without adding terrestrial fluorescence signatures (peaks C and A). Besides Rhône River plumes, mixing events of the entire water column injected relative aged (peaks C and M) CDOM from the bottom into the surface and thus appeared also as an important source of CDOM in surface waters of the Marseilles Bay. Therefore, the assessment of CDOM optical properties, within the hydrological context, pointed out several biotic (in situ biological production, biological production within Rhône River plumes) and abiotic (photobleaching, mixing) factors controlling CDOM transport, production and removal in this highly urbanized coastal area.


2014 ◽  
Vol 11 (10) ◽  
pp. 14097-14132 ◽  
Author(s):  
L. Tremblay ◽  
J. Caparros ◽  
K. Leblanc ◽  
I. Obernosterer

Abstract. Natural iron fertilization of high-nutrient low-chlorophyll (HNLC) waters induces annually occurring spring phytoplankton blooms off Kerguelen Islands (Southern Ocean). To examine the origin and fate of particulate and dissolved organic matter (POM and DOM), D- and L-amino acids (AA) were quantified at bloom and HNLC stations. Total hydrolysable AA accounted for 21–25% of surface particulate organic carbon (%POCAA) at the bloom sites, but for 10% at the HNLC site. A marked decrease in %POCAA with depth was observed at the most productive stations leading to values between 3 and 5% below 300 m depth. AA contributed to only 0.9–4.4% of dissolved organic carbon (%DOCAA) at all stations. The only consistent vertical trend was observed at the most productive station (A3-2) where %DOCAA decreased from ∼2% in the surface waters to 0.9% near 300 m. These AA yields and other markers revealed that POM and DOM were more rapidly altered or mineralized at the bloom sites compared to the HNLC site. Different molecular markers indicated that POM mostly originated from diatoms and bacteria. The estimated average proportion of POM from intact phytoplankton cells in surface waters was 45% at the bloom station A3-2, but 14% at the HNLC site. Estimates based on D-AA yields indicated that ∼15% of POM and ∼30% of DOM was of bacterial origin (cells and cell fragments) at all stations. Surprisingly, the DOM in HNLC waters appeared less altered than the DOM from the bloom, had slightly higher dissolved AA concentrations, and showed no sign of alteration within the water column. Unfavorable conditions for bacterial degradation in HNLC regions can explain these findings. In contrast, large inputs of labile organic molecules and iron, likely stimulate the degradation of organic matter (priming effect) and the production of more recalcitrant DOM (microbial carbon pump) during iron-fertilized blooms.


2010 ◽  
Vol 44 (8) ◽  
pp. 2975-2980 ◽  
Author(s):  
S. Haaland ◽  
D. Hongve ◽  
H. Laudon ◽  
G. Riise ◽  
R. D. Vogt

2015 ◽  
Vol 56 (69) ◽  
pp. 1-8 ◽  
Author(s):  
Mats A. Granskog ◽  
Daiki Nomura ◽  
Susann Müller ◽  
Andreas Krell ◽  
Takenobu Toyota ◽  
...  

AbstractAbsorption and fluorescence of chromophoric dissolved organic matter (CDOM) in sea ice and surface waters in the southern Sea of Okhotsk was examined. Sea-water CDOM had featureless absorption increasing exponentially with shorter wavelengths. Sea ice showed distinct absorption peaks in the ultraviolet, especially in younger ice. Older first-year sea ice had relatively flat absorption spectra in the ultraviolet range. Parallel factor analysis (PARAFAC) identified five fluorescent CDOM components, two humic-like and three protein-like. Sea water was largely governed by humic-like fluorescence. In sea ice, protein-like fluorescence was found in considerable excess relative to sea water. The accumulation of protein-like CDOM fluorescence in sea ice is likely a result of biological activity within the ice. Nevertheless, sea ice does not contribute excess CDOM during melt, but the material released will be of different composition than that present in the underlying waters. Thus, at least transiently, the CDOM introduced during sea-ice melt might provide a more labile source of fresher protein-like DOM to surface waters in the southern Sea of Okhotsk.


Sign in / Sign up

Export Citation Format

Share Document