scholarly journals A stator current vector orientation based multi-objective integrative suppressions of flexible load vibration and torque ripple for PMSM considering electrical loss

Author(s):  
Yang Yu ◽  
Leyao Cong ◽  
Xia Tian ◽  
Zengqiang Mi ◽  
Yang Li ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Yang Yu ◽  
Leyao Cong ◽  
Xia Tian ◽  
Renjie Xie ◽  
Jianbin Lu

Existing research studies on torque ripple suppression mostly ignore the electrical loss of PMSM. However, the electrical loss will not only decrease the operating efficiency but also adversely influence the suppression of torque ripple. This paper attempts to construct a unified framework to suppress torque ripple with consideration of electrical loss. Firstly, a dynamic mathematical model of PMSM under current vector orientation is established with a combination of electrical loss. The constraints that can achieve the control of both torque ripple and electrical loss for PMSM are derived. Then, on the basis of the backstepping control principle, a closed-loop I/f integrative control method under stator current vector orientation is proposed. Meanwhile, this paper also proposes a speed estimation algorithm of PMSM based on the least-squares method to realize wide-range speed identification and an online prediction algorithm for control parameters of backstepping control to enhance the stability of the motor in operation. Both simulations and experiments have been performed to verify the effectiveness of the proposed control method, and the results indicate that torque ripple is suppressed effectively, operating efficiency is significantly improved, and all variables are regulated to track their reference signals correctly and rapidly.


2019 ◽  
Vol 13 (3) ◽  
pp. 359-369 ◽  
Author(s):  
Yang Yu ◽  
Leyao Cong ◽  
Xia Tian ◽  
Zengqiang Mi ◽  
Jingqiu Tang ◽  
...  

2020 ◽  
Vol 67 (5) ◽  
pp. 3517-3527 ◽  
Author(s):  
Dawei Ding ◽  
Gaolin Wang ◽  
Nannan Zhao ◽  
Guoqiang Zhang ◽  
Dianguo Xu

2009 ◽  
Vol 22 (2) ◽  
pp. 183-195
Author(s):  
Ján Vittek ◽  
Vladimir Vavrús ◽  
Jozef Buday ◽  
Jozef Kuchta

The paper presents design and verification of Forced Dynamics Control of an actuator with linear permanent magnet synchronous motor. This control method is a relatively new one and offers an accurate realization of a dynamic speed response, which can be selected for given application by the user. In addition to this, the angle between stator current vector and moving part flux vector is maintained mutually perpendicular as it is under conventional vector control. To achieve prescribed speed response derived control law requires estimation of an external force, which is obtained from the set of observers. The first observer works in pseudo-sliding mode and observes speed of moving part while the second one has filtering effect for elimination of the previous one chattering. The overall control system is verified by simulations and experimentally. Preliminary experiments confirmed that the moving part speed response follows the prescribed one fairly closely.


2021 ◽  
Vol 54 (2) ◽  
pp. 345-354
Author(s):  
Fayçal Mehedi ◽  
Habib Benbouhenni ◽  
Lazhari Nezli ◽  
Djamel Boudana

In this work, the direct torque control (DTC) is applied to the five-phase permanent magnet synchronous motor (FP-PMSM). The DTC method based on classical space vector pulse width modulation (SVPWM) is a common solution used to overcome traditional problems; such as stator flux ripple, electromagnetic torque ripple and gives more total harmonic distortion (THD) of the stator current. The actual paper is based on improving the performance of DTC-SVPWM by using the feedforward neural networks (FNNs) instead of the proportional-integral (PI) regulators and hysteresis comparators (HCs) of the conventional SVPWM strategy. This algorithm can solve the traditional PI regulators and HCs problems which are represented in responses dynamic and reduce the torque ripple, flux ripple, and the THD of stator current of FP-PMSM drives. The proposed strategy was tested in different tests with simulation using Matlab software.


Sign in / Sign up

Export Citation Format

Share Document