scholarly journals Efficient Removal of Methylene Blue by Adsorption Using Composite Based Ca/Al Layered Double Hydroxide-Biochar

2020 ◽  

<p>Composite based Ca/Al layered double hydroxide and biochar was prepared using mixing coprecipitation method at pH 10. Composite and the starting materials was characterized using X-ray, FTIR, BET, thermal, and SEM-EDX analyses. Furthermore, composite was used as adsorbent of methylene blue from aqueous solution. Several factors that influencing the adsorption process was investigated such as adsorption time, initial concentration, and temperature adsorption. The performance of composite as adsorbent was evaluated by reusability process. The results showed that composite has diffraction peak at 9.82, 17.99, 19.86, 20.55, 29.32, 30.95, 32.65, 36.61, 37.00, 43.49, 47.15, 55.12, and 56.12 deg, which was based on diffraction of Ca/Al layered double hydroxide and biochar as starting materials. The surface area of composite was 158.291 m2/g and largely higher than starting materials. The morphology of composite also shows regularity shape than Ca/Al layered double hydroxide and biochar. Adsorption of methylene blue on composite showed that higher adsorption capacity (32.535 mg/g) than starting materials. The reusability of adsorbent showed that composite can be used several times ad adsorbent without loss adsorption capacity and these phenomena indicated composite is excellent material to remove dye from aqueous solution.</p>

2021 ◽  
Vol 23 (2) ◽  
pp. 103
Author(s):  
A. Lesbani ◽  
M.F. Azmi ◽  
N.R. Palapa ◽  
T. Taher ◽  
R. Andreas ◽  
...  

Layered double hydroxide (LDH) Ni/Cr intercalated [α-SiW12O40]4- has been prepared using the coprecipitation method. Materials were characterized by X-ray, FTIR, BET, and pHpzc analyses. Material Ni/Cr-[α-SiW12O40] LDHs exhibited a high surface area 98.986 m2 g-1 from 11.030 m2 g-1 for Ni/Cr LDH where the interlayer space was an increase from 7.99 to 10.87 Å with indicated that high crystallinity. Ni/Cr-[α-SiW12O40] LDHs showed higher adsorption capacity for iron(II) is up to 250 mg g-1. Adsorption of iron(II) on LDHs has an endothermic process and classify as physical adsorption.


2020 ◽  
Vol 9 (3) ◽  
pp. 9-14
Author(s):  
Hao Pham Van ◽  
Linh Ha Xuan ◽  
Oanh Phung Thi ◽  
Hong Phan Ngoc ◽  
Huy Nguyen Nhat ◽  
...  

This report presents the effect of synthesis conditions on the synthesis of graphene nanosheets via electrochemical exfoliation method for adsorbing methylene blue from aqueous solution. Oxygen-containing functional groups and defects in the material were characterized by Raman and X-ray photoelectron spectroscopy (XPS). As a result, by using voltage of 15 V, (NH4)2SO4 (5%, 250 mL) and KOH (7.5%, 250 mL), the obtained material showed the highest MB adsorption capacity due to the high densities of oxygen-containing groups and defects comparison to other conditions.


Crystals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 342 ◽  
Author(s):  
Kwanjira Panplado ◽  
Maliwan Subsadsana ◽  
Supalax Srijaranai ◽  
Sira Sansuk

This work demonstrates a simple approach for the efficient removal of tetracycline (TC) antibiotic from an aqueous solution. The in situ-adsorption removal method involved instant precipitation formation of mixed metal hydroxides (MMHs), which could immediately act as a sorbent for capturing TC from an aqueous solution, by employing layered double hydroxide (LDH) components including magnesium and aluminum ions in alkaline conditions. By using this approach, 100% removal of TC can be accomplished within 4 min under optimized conditions. The fast removal possibly resulted from an instantaneous adsorption of TC molecules onto the charged surface of MMHs via hydrogen bonding and electrostatically induced attraction. The results revealed that our removal technique was superior to the use of LDH as a sorbent in terms of both removal kinetics and efficiency. Moreover, the recovery of captured TC was tested under the influence of various common anions. It was found that 98% recovery could be simply achieved by using phosphate, possibly due to its highly charged density. Furthermore, this method was successful for efficient removal of TC in real environmental water samples.


2017 ◽  
Vol 46 ◽  
pp. 135-147 ◽  
Author(s):  
K. Gohatre Omdeo ◽  
Vasudeo Rane Ajay ◽  
Kanny Krishnan ◽  
V.K. Abitha ◽  
Nikesh Samarth ◽  
...  

Layered double hydroxides (abbreviated as LDHs) are one of the nanoordered layered compounds. The importance of layered compound is based on their ability to retain chemical species with electrical charges compatible to those of the layers. In this study we have reported the synthesis of nanosized layered double hydroxide (LDH) by co-precipitation method using two different surfactants as cetyl trimethyl ammonium bromide (CTAB) and octadecyl trimethyl ammonium bromide (ODTMA) having different critical micelle concentration (CMC) /chain length and its comparative results on calcined surface modified LDH (CS-LDH). The structure of surface modified layered double hydroxide (CS-LDH) synthesized is unique and has important advantages to the photocatalytic activity. LDH has significant number of application due to their structural, chemical properties etc., these compounds can be used as catalyst, adsorbents, anion exchanger. The photocatalytic activity of prepared surface modified CS-LDH was tested on degradation of the methylene blue (MB) dye in an aqueous solution. The surface characteristics of LDH and CS-LDH were examined using Energy Dispersive X-ray (EDX), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and UV-Visible spectrophotometer for Photocatalytic activity under visible light using MB dye. It was observed that highly exfoliated and basal spacing in CS-LDH-ODTMA which enhanced photocatalytic activity (Approx. 60% degradation) than that of comparison to CS-LDH-CTAB (Approx. 32% degradation).


2021 ◽  
Vol 6 (2) ◽  
pp. 85-95
Author(s):  
Patimah Mega Syah Bahar Nur Siregar ◽  
Neza Rahayu Palapa ◽  
Alfan Wijaya ◽  
Erni Salasia Fitri ◽  
Aldes Lesbani

In this research, Ni/Al layered double hydroxide (LDH) was modified by using co-precipitation method to generate Ni/Al-graphite (Ni/Al-GF) and Ni/Al-biochar (Ni/Al-BC). The adsorbents were applied to remove Congo Red from aqueous solution. The obtained samples were characterized by using XRD, FTIR, BET and TG-DTA. The XRD diffraction pattern of Ni/Al LDH, Ni/Al-GF, and Ni/Al-BC presented the formation of composite with decreasing crystallinity. The surface area modified LDHs was higher than the pristine materials, which was obtained 15.106 m2/g, 21.595 m2/g and 438.942 m2/g for Ni/Al-LDH, Ni/Al-GF, Ni/Al-BC respectively. The adsorption of Congo Red on the materials was tested at diferent parameters and the results exhibited that Congo Red adsorption on LDHs were pseudo-first-order (PFO) kinetic, spontaneous, endothermic and followed Langmuir model. The adsorbents removed Congo Red by high performance stability with adsorption capacity was 116.297 mg/g for Ni/Al-GF and 312.500 mg/g for Ni/Al-BC. These adsorption capacity was higher than the pristine LDH (61.728 mg/g). The regeneration process which carried out for five cycles showed that Ni/Al-GF and Ni/Al-BC have stable structures as reuse adsorbents for Congo Red from aqueous solution.


2020 ◽  
Vol 9 (2) ◽  
pp. 383-391

A MgCr-based layered double hydroxide (LDH) was synthesized by a coprecipitation method, followed by an intercalation process using an oxalic anion. The materials were characterized using X-ray diffraction analysis, FT-IR spectroscopy, and pH pzc measurement. The materials were then applied as adsorbents for removal of methylene blue (MB) and rhodamine B (RhB) from aqueous solution. Pristine Mg/Cr LDH exhibited RhB adsorption capacity of 32.154 mg g⁻1, whereas the use of intercalated Mg/Cr LDH caused an increase in the capacity (139.526 mg g⁻1). Kinetic studies indicated that the dye adsorption using both LDHs followed a pseudo-second-order kinetic model; the K2 values of pristine and modified Mg/Cr LDH for RhB and MB were 6.970, 0.001, 0.426, and 2.056 g mg⁻1 min⁻1, respectively. The thermodynamic study identified that the adsorption of both dyes onto the LDHs was a spontaneous process and can be classified as physical adsorption with adsorption energies of <40 kJ/mol. Moreover, the desorption and regeneration experiments indicated the high economic feasibility and reusability of the LDHs. By using HCl as the optimal solvent, the LDHs could desorb as much as 98% of the dye and could be used as adsorbents with high adsorption capacity over three cycles.


2020 ◽  
Vol 18 ◽  
pp. 100401 ◽  
Author(s):  
Hasna Ouassif ◽  
El Mostafa Moujahid ◽  
Redouane Lahkale ◽  
Rachid Sadik ◽  
Fatima Zahra Bouragba ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
pp. 85-94

A MgCr-based layered double hydroxide (LDH) was synthesized by a coprecipitation method, followed by an intercalation process using an oxalic anion. The materials were characterized using X-ray diffraction analysis, FT-IR spectroscopy, and pH pzc measurement. The materials were then applied as adsorbents for removal of methylene blue (MB) and rhodamine B (RhB) from aqueous solution. Pristine Mg/Cr LDH exhibited RhB adsorption capacity of 32.154 mg g⁻1, whereas the use of intercalated Mg/Cr LDH caused an increase in the capacity (139.526 mg g⁻1). Kinetic studies indicated that the dye adsorption using both LDHs followed a pseudo-second-order kinetic model; the K2 values of pristine and modified Mg/Cr LDH for RhB and MB were 6.970, 0.001, 0.426, and 2.056 g mg⁻1 min⁻1, respectively. The thermodynamic study identified that the adsorption of both dyes onto the LDHs was a spontaneous process and can be classified as physical adsorption with adsorption energies of <40 kJ/mol. Moreover, the desorption and regeneration experiments indicated the high economic feasibility and reusability of the LDHs. By using HCl as the optimal solvent, the LDHs could desorb as much as 98% of the dye and could be used as adsorbents with high adsorption capacity over three cycles.


Sign in / Sign up

Export Citation Format

Share Document