scholarly journals Ni/Cr-[α-SiW12O40] Layered Double Hydroxide as Effective Adsorbent of Iron(II) From Aqueous Solution

2021 ◽  
Vol 23 (2) ◽  
pp. 103
Author(s):  
A. Lesbani ◽  
M.F. Azmi ◽  
N.R. Palapa ◽  
T. Taher ◽  
R. Andreas ◽  
...  

Layered double hydroxide (LDH) Ni/Cr intercalated [α-SiW12O40]4- has been prepared using the coprecipitation method. Materials were characterized by X-ray, FTIR, BET, and pHpzc analyses. Material Ni/Cr-[α-SiW12O40] LDHs exhibited a high surface area 98.986 m2 g-1 from 11.030 m2 g-1 for Ni/Cr LDH where the interlayer space was an increase from 7.99 to 10.87 Å with indicated that high crystallinity. Ni/Cr-[α-SiW12O40] LDHs showed higher adsorption capacity for iron(II) is up to 250 mg g-1. Adsorption of iron(II) on LDHs has an endothermic process and classify as physical adsorption.

2020 ◽  

<p>Composite based Ca/Al layered double hydroxide and biochar was prepared using mixing coprecipitation method at pH 10. Composite and the starting materials was characterized using X-ray, FTIR, BET, thermal, and SEM-EDX analyses. Furthermore, composite was used as adsorbent of methylene blue from aqueous solution. Several factors that influencing the adsorption process was investigated such as adsorption time, initial concentration, and temperature adsorption. The performance of composite as adsorbent was evaluated by reusability process. The results showed that composite has diffraction peak at 9.82, 17.99, 19.86, 20.55, 29.32, 30.95, 32.65, 36.61, 37.00, 43.49, 47.15, 55.12, and 56.12 deg, which was based on diffraction of Ca/Al layered double hydroxide and biochar as starting materials. The surface area of composite was 158.291 m2/g and largely higher than starting materials. The morphology of composite also shows regularity shape than Ca/Al layered double hydroxide and biochar. Adsorption of methylene blue on composite showed that higher adsorption capacity (32.535 mg/g) than starting materials. The reusability of adsorbent showed that composite can be used several times ad adsorbent without loss adsorption capacity and these phenomena indicated composite is excellent material to remove dye from aqueous solution.</p>


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Garima Rathee ◽  
Amardeep Awasthi ◽  
Damini Sood ◽  
Ravi Tomar ◽  
Vartika Tomar ◽  
...  

Abstract It would be of great significance to introduce a new biocompatible Layered Double Hydroxide (LDH) for the efficient remediation of wastewater. Herein, we designed a facile, biocompatible and environmental friendly layered double hydroxide (LDH) of NiFeTi for the very first time by the hydrothermal route. The materialization of NiFeTi LDH was confirmed by FTIR, XRD and Raman studies. BET results revealed the high surface area (106 m2/g) and the morphological studies (FESEM and TEM) portrayed the sheets-like structure of NiFeTi nanoparticles. The material so obtained was employed as an efficient adsorbent for the removal of organic dyes from synthetic waste water. The dye removal study showed >96% efficiency for the removal of methyl orange, congo red, methyl blue and orange G, which revealed the superiority of material for decontamination of waste water. The maximum removal (90%) of dyes was attained within 2 min of initiation of the adsorption process which supported the ultrafast removal efficiency. This ultrafast removal efficiency was attributed to high surface area and large concentration of -OH and CO32− groups present in NiFeTi LDH. In addition, the reusability was also performed up to three cycles with 96, 90 and 88% efficiency for methyl orange. Furthermore, the biocompatibility test on MHS cell lines were also carried which revealed the non-toxic nature of NiFeTi LDH at lower concentration (100% cell viability at 15.6 μg/ml). Overall, we offer a facile surfactant free method for the synthesis of NiFeTi LDH which is efficient for decontamination of anionic dyes from water and also non-toxic.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Dhiraj Dutta ◽  
Jyoti Prasad Borah ◽  
Amrit Puzari

Results of investigation on adsorption of Mn2+ from aqueous solution by manganese oxide-coated hollow polymethylmethacrylate microspheres (MHPM) are reported here. This is the first report on Mn-coated hollow polymer as a substitute for widely used materials like green sand or MN-coated sand. Hollow polymethylmethacrylate (HPM) was prepared by using a literature procedure. Manganese oxide (MnO) was coated on the surface of HPM (MHPM) by using the electroless plating technique. The HPM and MHPM were characterized by using optical microscopy (OM), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Optical and scanning micrographs were used to monitor the surface properties of the coated layer which revealed the presence of MnO on the surface of HPM. TGA showed the presence of 4-5% of MnO in MHPM. Adsorption isotherm studies were carried out as a function of pH, initial ion concentration, and contact time, to determine the adsorption efficiency for removal of Mn2+ from contaminated water by the synthesized MHPM. The isotherm results showed that the maximum adsorption capacity of MnO-coated HPM to remove manganese contaminants from water is 8.373 mg/g. The obtained R 2 values of Langmuir isotherm and Freundlich isotherm models were 1 and 0.87, respectively. Therefore, R 2 magnitude confirmed that the Langmuir model is best suited for Mn2+ adsorption by a monolayer of MHPM adsorbent. The material developed shows higher adsorption capacity even at a higher concentration of solute ions, which is not usually observed with similar materials of this kind. Overall findings indicate that MHPM is a very potential lightweight adsorbent for removal of Mn2+ from the aqueous solution because of its low density and high surface area.


2021 ◽  
Vol 6 (2) ◽  
pp. 85-95
Author(s):  
Patimah Mega Syah Bahar Nur Siregar ◽  
Neza Rahayu Palapa ◽  
Alfan Wijaya ◽  
Erni Salasia Fitri ◽  
Aldes Lesbani

In this research, Ni/Al layered double hydroxide (LDH) was modified by using co-precipitation method to generate Ni/Al-graphite (Ni/Al-GF) and Ni/Al-biochar (Ni/Al-BC). The adsorbents were applied to remove Congo Red from aqueous solution. The obtained samples were characterized by using XRD, FTIR, BET and TG-DTA. The XRD diffraction pattern of Ni/Al LDH, Ni/Al-GF, and Ni/Al-BC presented the formation of composite with decreasing crystallinity. The surface area modified LDHs was higher than the pristine materials, which was obtained 15.106 m2/g, 21.595 m2/g and 438.942 m2/g for Ni/Al-LDH, Ni/Al-GF, Ni/Al-BC respectively. The adsorption of Congo Red on the materials was tested at diferent parameters and the results exhibited that Congo Red adsorption on LDHs were pseudo-first-order (PFO) kinetic, spontaneous, endothermic and followed Langmuir model. The adsorbents removed Congo Red by high performance stability with adsorption capacity was 116.297 mg/g for Ni/Al-GF and 312.500 mg/g for Ni/Al-BC. These adsorption capacity was higher than the pristine LDH (61.728 mg/g). The regeneration process which carried out for five cycles showed that Ni/Al-GF and Ni/Al-BC have stable structures as reuse adsorbents for Congo Red from aqueous solution.


2020 ◽  
Vol 9 (2) ◽  
pp. 383-391

A MgCr-based layered double hydroxide (LDH) was synthesized by a coprecipitation method, followed by an intercalation process using an oxalic anion. The materials were characterized using X-ray diffraction analysis, FT-IR spectroscopy, and pH pzc measurement. The materials were then applied as adsorbents for removal of methylene blue (MB) and rhodamine B (RhB) from aqueous solution. Pristine Mg/Cr LDH exhibited RhB adsorption capacity of 32.154 mg g⁻1, whereas the use of intercalated Mg/Cr LDH caused an increase in the capacity (139.526 mg g⁻1). Kinetic studies indicated that the dye adsorption using both LDHs followed a pseudo-second-order kinetic model; the K2 values of pristine and modified Mg/Cr LDH for RhB and MB were 6.970, 0.001, 0.426, and 2.056 g mg⁻1 min⁻1, respectively. The thermodynamic study identified that the adsorption of both dyes onto the LDHs was a spontaneous process and can be classified as physical adsorption with adsorption energies of <40 kJ/mol. Moreover, the desorption and regeneration experiments indicated the high economic feasibility and reusability of the LDHs. By using HCl as the optimal solvent, the LDHs could desorb as much as 98% of the dye and could be used as adsorbents with high adsorption capacity over three cycles.


Author(s):  
Jingjing Tian ◽  
Jun Qu ◽  
Lei Wan ◽  
Qiwu Zhang ◽  
Huimin Gao

In this study, Li-Al-OH layered double hydroxide (LDH), which was prepared by solvent-free one-step mechanochemical reaction of LiOH and Al(OH)3, was applied to remove boron from aqueous solution. Dry-grinding for 3 h at a rotational speed of 500 rpm, Li/Al molar 1/2 was the optimum condition to prepare highly crystalline of Li-Al LDH phase with no evident impure phases. Two milling products with Li/Al molar ratio at 1/2 and 2/2 were evaluated for boron adsorption. The results confirmed that Li/Al molar ratio 2/2 sample showed high boron adsorption capacity due to the physical adsorption of Li-Al-OH LDH and chemical synergism of phase gel Al(OH)3. The adsorption isotherms, described by the Langmuir model, indicated maximum monolayer boron uptake capacity 45.45 mg/g, implying competitive adsorption capacity of the material in our experiment.


2015 ◽  
Vol 44 (25) ◽  
pp. 11592-11600 ◽  
Author(s):  
Li-Jing Zhou ◽  
Xiaoxi Huang ◽  
Hui Chen ◽  
Panpan Jin ◽  
Guo-Dong Li ◽  
...  

A high surface area flower-like Ni–Fe LDH was shown to be a water oxidation catalyst.


2020 ◽  
Vol 9 (1) ◽  
pp. 85-94

A MgCr-based layered double hydroxide (LDH) was synthesized by a coprecipitation method, followed by an intercalation process using an oxalic anion. The materials were characterized using X-ray diffraction analysis, FT-IR spectroscopy, and pH pzc measurement. The materials were then applied as adsorbents for removal of methylene blue (MB) and rhodamine B (RhB) from aqueous solution. Pristine Mg/Cr LDH exhibited RhB adsorption capacity of 32.154 mg g⁻1, whereas the use of intercalated Mg/Cr LDH caused an increase in the capacity (139.526 mg g⁻1). Kinetic studies indicated that the dye adsorption using both LDHs followed a pseudo-second-order kinetic model; the K2 values of pristine and modified Mg/Cr LDH for RhB and MB were 6.970, 0.001, 0.426, and 2.056 g mg⁻1 min⁻1, respectively. The thermodynamic study identified that the adsorption of both dyes onto the LDHs was a spontaneous process and can be classified as physical adsorption with adsorption energies of <40 kJ/mol. Moreover, the desorption and regeneration experiments indicated the high economic feasibility and reusability of the LDHs. By using HCl as the optimal solvent, the LDHs could desorb as much as 98% of the dye and could be used as adsorbents with high adsorption capacity over three cycles.


2021 ◽  
Vol 21 (2) ◽  
pp. 421
Author(s):  
Aldes Lesbani ◽  
Neza Rahayu Palapa ◽  
Rabelia Juladika Sayeri ◽  
Tarmizi Taher ◽  
Nurlisa Hidayati

Ni/Al layered double hydroxide was used as a starting material for composite formation with biochar as a matrix. The materials were characterized using X-ray, FTIR, nitrogen adsorption-desorption, thermal, and morphology analyses. The NiAl LDH/Biochar material is then used as an adsorbent of methylene blue from an aqueous solution. The factor that was influencing adsorption such as pH, time, methylene blue concentration, and temperature adsorption was studied systematically. The regeneration of adsorbent was performed to know the stability of NiAl LDH/Biochar under several cycle adsorption processes. The results showed that NiAl LDH/Biochar has a specific diffraction peak at 11.63° and 22.30°. NiAl LDH/Biochar has more than ten-fold surface area properties (438,942 m2/g) than biochar (50.936 m2/g), and Ni/Al layered double hydroxide (92.682 m2/g). The methylene blue adsorption on NiAl LDH/Biochar follows a pseudo-second-order kinetic adsorption model and classify as physical adsorption. The high reusability properties were found for NiAl LDH/Biochar, which was largely different from biochar and Ni/Al layered double hydroxide.


Author(s):  
Zaini Hamzah ◽  
Mohd Najif Ab Rahman ◽  
Yamin Yasin ◽  
Siti Mariam Sumari ◽  
Ahmad Saat

Layered double hydroxide with molar ratio of 4 (MAN 4) was synthesized by co-precipitation and followed by hydrothermal method. The compound was then later going through ion exchange with K2HPO4 for 48 hours to produce MgAlHPO4 (MAHP 4). The solid produced were characterized using X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR). Adsorption of lead solution by MAHP 4 was carried out using batch experiment by mixing the lead solution and the solid of layered double hydroxide. The effects of various parameters such as contact time, pH, adsorbent dosage and initial concentration were investigated. The optimum pH for lead removal was found to be at pH of 5 and the optimum time of lead removal was found at 2 hours. The isotherm data was analysed using Langmuir and the correlation coefficient of 0.998 was obtained. The maximum adsorption capacity, Qo (mg/g) of 500 mg/g was also recorded from the Langmuir isotherm. The remaining lead solution was determined by using EDXRF (Energy Dispersive X-Ray Fluorescence spectrometry) model MiniPal 4 (PAN analytical). The results in this study indicate that MAHP 4 was an interesting adsorbent for removing lead from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document