scholarly journals Determination of the Size-topological Parameters the Structure of Cast Iron

Author(s):  
Константин Макаренко ◽  
Konstantin Makarenko ◽  
Екатерина Зенцова ◽  
Ekaterina Zentsova ◽  
Александр Никитин ◽  
...  

The methods of geometric identification and determination of the main size-topological parameters of the graphite phase in cast iron are studied. The methods used in world practice to identify the form of graphite inclusions are considered. It is proposed to use the methods of fractal geometry for the determination and identification of graphite inclusions in cast iron. A method for determining the size-topological characteristics of the graphite phase in cast iron has been developed. To describe the non-uniformity of the distribution, the lacunarity function was used. An example of determining the size-topological parameters of the graphite phase for various types of cast iron is presented.

Author(s):  
Konstantin Makarenko ◽  
Ekaterina Zentsova

The basics of metallography and modern systems used to study and analyse the structures of materials are presented. Special attention is paid to the methods of quantitative microscopy. The review of modern computer programs for analysis of image microstructures obtained from digital microscopes is given. The fundamentals of fractal analysis as a highly effective tool for calculating numerical values of parameters of geometrically complex objects are described. The analysis of the graphitized cast iron structure is provided as an example; the application of the fractal analysis method for determining such characteristics of the graphite phase as the shape of graphite inclusions and their distribution in the amount of the alloy is demonstrated. In the course of the research, different classes of cast iron have been studied. To determine the shape of graphite inclusions it was suggested to use fractal dimension. The nonuniformity of the distribution was estimated by such function as lacunarity. The separate stages of determining these characteristics with a specialized FracLac plugin within the ImageJ program are presented. The results obtained have shown high adequacy. In spite of positive assessments, there are shortcomings revealed in the course of the research on the application of fractal analysis methods for identifying geometrically complex dimensional and topological parameters of the graphite phase in cast iron. The ways to further improve these methods in order to solve a wide range of problems in metallography of alloys are suggested.


2021 ◽  
Vol 2021 (9) ◽  
pp. 4-14
Author(s):  
Konstantin Makarenko ◽  
Anatoliy Poddubnyy ◽  
Sergey Glushenok ◽  
Ekaterina Zencova

The basics of metallography and modern systems used for studying and analyzing the structures of materials are described. Special attention is paid to the techniques of quantitative microscopy, as a kind of ancestress of modern microstructure analysis systems. The analysis of modern computer programs used to analyze images of microstructures obtained from digital microscopes is presented. The basics of fractal analysis as a highly effective tool for calculating numerical values of parameters of geometrically complex objects are outlined. Using the example of the analysis of graphitized cast iron structure, the application of the fractal analysis method to determine such characteristics of the graphite phase as the shape of graphite inclusions and their distribution in the alloy volume is demonstrated. As part of the study, various classes of cast iron have been studied, such as graphitic pig iron with flaked graphite, cast iron with vermicular graphite, and high-grade cast iron with spheroidal graphite. To determine the shape of graphite inclusions, a fractal dimension has been proposed to be used, and the unevenness of the distribution has been estimated using such a function as lacunarity. The individual stages of determining these characteristics using a specialized FracLac module applied in the structure of the ImageJ program are presented. The obtained results showed high adequacy. Despite positive assessment, the shortcomings identified during the research on the use of fractal analysis methods for identifying geometrically complex dimensional and topological parameters inherent in the graphite phase in cast iron are noted. The ways for further improvement of these methods for solving a wide range of problems in metallography of alloys are proposed.


Author(s):  
S. G. Sandomirskii

The analysis of ranges of possible change of temporary resistance of sB of castings from ductile and gray cast iron is carried out. The analytical description of ranges of change of sВ depending on casting BH hardness is developed. It is shown that the range of change of sВ of pig-iron castings, wider in comparison with steel, with the measured hardness of BH is caused variations of forms and the amount of graphite inclusions at the considered classes of cast iron and influence of thickness of a wall of casting from gray cast iron on dependence of sВ (HB). The result is intended for determination of the guaranteed casting size sВ without her destruction, when there is no information on sВ of check test pieces.


2005 ◽  
Vol 1 (1) ◽  
pp. 21-24
Author(s):  
Hamid Reza Samadi

In exploration geophysics the main and initial aim is to determine density of under-research goals which have certain density difference with the host rock. Therefore, we state a method in this paper to determine the density of bouguer plate, the so-called variogram method based on fractal geometry. This method is based on minimizing surface roughness of bouguer anomaly. The fractal dimension of surface has been used as surface roughness of bouguer anomaly. Using this method, the optimal density of Charak area insouth of Hormozgan province can be determined which is 2/7 g/cfor the under-research area. This determined density has been used to correct and investigate its results about the isostasy of the studied area and results well-coincided with the geology of the area and dug exploratory holes in the text area


1971 ◽  
Vol 25 (3) ◽  
pp. 342-344 ◽  
Author(s):  
John P. Cummings ◽  
Ronald H. Hall ◽  
Ronald J. Plenzler

This paper presents an analytical method for the determination of minor metals in white cast iron fused buttons. This method enables the measurement of metals in cast iron with rapidity and excellent analytical results. Buttons of 40 g appear to be ideal but smaller button samples can be tolerated. The fused buttons have good homogeneity, very slight weight loss, and no significant change in composition. Metal cast spectrochemical samples are analyzed in an inert atmosphere utilizing a high voltage spark.


2021 ◽  
pp. 4-15
Author(s):  
V. N. Danilov ◽  
L. V. Voronkova

Algorithms have been presented for calculating the velocity (in the approximation of a fine-layered model) and the attenuation coefficient of a longitudinal ultrasonic wave in cast iron, depending on the average size of graphite elements and its volume content, the calculation results for which are qualitatively confirmed experimentally. The calculation was performed using a fine-layered model of the structure, the graphite inclusions were described in the form of plane-parallel layers placed in an isotropic elastic medium (metal base). Computer simulation of acoustic paths for a mediumcast iron with flake graphite for standard direct converters is carried out in order to study the influence of such a medium on the characteristics of transmitted and received signals during ultrasonic testing. In the course of the research, a previously developed model was used to calculate the attenuation coefficient of longitudinal waves in cast iron with flake graphite due to their Rayleigh and phase scattering on graphite inclusions. Computer simulation of the acoustic characteristics of the signals of a direct linear probe with a phased array in cast iron with flake graphite was carried out, during which the shape of the acoustic pulses of the longitudinal wave was calculated, depending on the distance traveled by the wave and the value of the attenuation coefficient for various models of cast iron. The main modeled characteristics of the transducer include the directivity characteristic and the change in the signal amplitude along the acoustic axis. It is shown that for cast iron with flake graphite, there are cases when the directivity of the probe with a phased array transmitted into the cast iron is practically absent.


Sign in / Sign up

Export Citation Format

Share Document