Determination of conditions for development and growth of a metastable diamond phase of carbon and absence of stable graphite phase

1999 ◽  
Vol 72 (2) ◽  
pp. 364-367
Author(s):  
L. O. Meleshko
Keyword(s):  
2010 ◽  
Vol 25 (2) ◽  
pp. 143-148 ◽  
Author(s):  
Mark A. Rodriguez ◽  
Mark H. Van Benthem ◽  
David Ingersoll ◽  
Sven C. Vogel ◽  
Helmut M. Reiche

The electrochemical reaction behavior of a commercial Li-ion battery (LiFePO4-based cathode, graphite-based anode) has been measured via in situ neutron diffraction. A multivariate analysis was successfully applied to the neutron diffraction data set facilitating in the determination of Li bearing phases participating in the electrochemical reaction in both the anode and cathode as a function of state-of-charge (SOC). The analysis resulted in quantified phase fraction values for LiFePO4 and FePO4 cathode compounds as well as the identification of staging behavior of Li6, Li12, Li24, and graphite phases in the anode. An additional Li-graphite phase has also been tentatively identified during electrochemical cycling as LiC48 at conditions of ∼5% to 15% SOC.


2020 ◽  
Vol 831 ◽  
pp. 127-131
Author(s):  
S.Tipawan Khlayboonme ◽  
Thowladda Warawoot

Ultra-nanocrystalline diamond films were prepared by a microwave plasma-enhanced chemical vapor deposition reactor using CH4/H2 gas mixture with a power as low as 650 W. The effects of CH4 concentration on nanostructure of the films and gas-phase species in plasma were investigated. The CH4 concentrations of 1.5%, 3.0%, 3.5%, and 4.0% were used and balanced with H2 to a total flow rate of 200 sccm. Morphology and composition of the films were characterized by SEM, Raman spectroscopy and Auger spectroscopy. The gas-phase species and electron density in the plasma were explored by optical emission spectroscopy and plasma-impedance measurement. The increasing CH4 concentration from 1.5% to 4.0% increased C2Hx species and decreased electron density. Phase of the film transform from nano- into ultranano- diamond phase but the growth rate revealingly decreased from 300 to 210 nm/h. Raman spectra indicate the higher CH4 concentration promted phase of the film transiton from NCD to UNCD. While Auger spectra revealed that UNCD film deposited with 4.0%CH4 was composed of 90.52% diamond phase but only 9.48% of graphite phase. The relation between phase transformation of the films and growth mechnism controlled by gas-phase species in the plasma will be dissused.


Author(s):  
Константин Макаренко ◽  
Konstantin Makarenko ◽  
Екатерина Зенцова ◽  
Ekaterina Zentsova ◽  
Александр Никитин ◽  
...  

The methods of geometric identification and determination of the main size-topological parameters of the graphite phase in cast iron are studied. The methods used in world practice to identify the form of graphite inclusions are considered. It is proposed to use the methods of fractal geometry for the determination and identification of graphite inclusions in cast iron. A method for determining the size-topological characteristics of the graphite phase in cast iron has been developed. To describe the non-uniformity of the distribution, the lacunarity function was used. An example of determining the size-topological parameters of the graphite phase for various types of cast iron is presented.


1966 ◽  
Vol 25 ◽  
pp. 93-97
Author(s):  
Richard Woolley

It is now possible to determine proper motions of high-velocity objects in such a way as to obtain with some accuracy the velocity vector relevant to the Sun. If a potential field of the Galaxy is assumed, one can compute an actual orbit. A determination of the velocity of the globular clusterωCentauri has recently been completed at Greenwich, and it is found that the orbit is strongly retrograde in the Galaxy. Similar calculations may be made, though with less certainty, in the case of RR Lyrae variable stars.


1999 ◽  
Vol 190 ◽  
pp. 549-554
Author(s):  
Nino Panagia

Using the new reductions of the IUE light curves by Sonneborn et al. (1997) and an extensive set of HST images of SN 1987A we have repeated and improved Panagia et al. (1991) analysis to obtain a better determination of the distance to the supernova. In this way we have derived an absolute size of the ringRabs= (6.23 ± 0.08) x 1017cm and an angular sizeR″ = 808 ± 17 mas, which give a distance to the supernovad(SN1987A) = 51.4 ± 1.2 kpc and a distance modulusm–M(SN1987A) = 18.55 ± 0.05. Allowing for a displacement of SN 1987A position relative to the LMC center, the distance to the barycenter of the Large Magellanic Cloud is also estimated to bed(LMC) = 52.0±1.3 kpc, which corresponds to a distance modulus ofm–M(LMC) = 18.58±0.05.


1961 ◽  
Vol 13 ◽  
pp. 29-41
Author(s):  
Wm. Markowitz
Keyword(s):  

A symposium on the future of the International Latitude Service (I. L. S.) is to be held in Helsinki in July 1960. My report for the symposium consists of two parts. Part I, denoded (Mk I) was published [1] earlier in 1960 under the title “Latitude and Longitude, and the Secular Motion of the Pole”. Part II is the present paper, denoded (Mk II).


1972 ◽  
Vol 1 ◽  
pp. 27-38
Author(s):  
J. Hers

In South Africa the modern outlook towards time may be said to have started in 1948. Both the two major observatories, The Royal Observatory in Cape Town and the Union Observatory (now known as the Republic Observatory) in Johannesburg had, of course, been involved in the astronomical determination of time almost from their inception, and the Johannesburg Observatory has been responsible for the official time of South Africa since 1908. However the pendulum clocks then in use could not be relied on to provide an accuracy better than about 1/10 second, which was of the same order as that of the astronomical observations. It is doubtful if much use was made of even this limited accuracy outside the two observatories, and although there may – occasionally have been a demand for more accurate time, it was certainly not voiced.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


1975 ◽  
Vol 26 ◽  
pp. 341-380 ◽  
Author(s):  
R. J. Anderle ◽  
M. C. Tanenbaum

AbstractObservations of artificial earth satellites provide a means of establishing an.origin, orientation, scale and control points for a coordinate system. Neither existing data nor future data are likely to provide significant information on the .001 angle between the axis of angular momentum and axis of rotation. Existing data have provided data to about .01 accuracy on the pole position and to possibly a meter on the origin of the system and for control points. The longitude origin is essentially arbitrary. While these accuracies permit acquisition of useful data on tides and polar motion through dynamio analyses, they are inadequate for determination of crustal motion or significant improvement in polar motion. The limitations arise from gravity, drag and radiation forces on the satellites as well as from instrument errors. Improvements in laser equipment and the launch of the dense LAGEOS satellite in an orbit high enough to suppress significant gravity and drag errors will permit determination of crustal motion and more accurate, higher frequency, polar motion. However, the reference frame for the results is likely to be an average reference frame defined by the observing stations, resulting in significant corrections to be determined for effects of changes in station configuration and data losses.


1979 ◽  
Vol 44 ◽  
pp. 349-355
Author(s):  
R.W. Milkey

The focus of discussion in Working Group 3 was on the Thermodynamic Properties as determined spectroscopically, including the observational techniques and the theoretical modeling of physical processes responsible for the emission spectrum. Recent advances in observational techniques and theoretical concepts make this discussion particularly timely. It is wise to remember that the determination of thermodynamic parameters is not an end in itself and that these are interesting chiefly for what they can tell us about the energetics and mass transport in prominences.


Sign in / Sign up

Export Citation Format

Share Document