scholarly journals Generation of a fusion protein containing the two functional coiled-coil domain of t- SNARE, SNAP-23 and a transmembrane domain for mast cell

2020 ◽  
Vol 12 (4) ◽  
pp. 670-674
Author(s):  
D. M. Agase ◽  
S. B. Zade ◽  
T.S. Kothe

SNAREs (Soluble N-Ethylmaleimide-Sensitive Fusion Protein Attachment Protein Receptor) are a class of membrane proteins that mediate membrane-membrane fusion in eukaryotic cells. SNAP-23 is a t-SNARE which is a component of cellular machinery is required for membrane fusion. SNAP-23 lacks transmembrane domain. Cysteines in the linker region of SNAP-23 are involved in targeting of SNAP-23 to the membrane. In the present work, a portion of MDR3 gene (MDR3 1-145) and CLP24 (CLP134-195) was subcloned into a plasmid encoding EGFP-SNAP-23 Cys- mutant for the generation of a fusion protein containing the two functional coiled-coil domain of t-SNARE, SNAP 23 and a transmembrane domain of MDR3 gene and CLP24 for mast cell. This fusion protein will be important to study the membrane targeting and raft association of the chimeric SNAP23 protein, which plays an important role in mast cell exocytosis in the mammalian system. A novel bioinformatics approach has been applied to identify the specific transmembrane domain. This novel approach can be used to construct other fusion proteins.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 667-667
Author(s):  
Christoph Walz ◽  
Georgia Metzgeroth ◽  
Claudia Schoch ◽  
Torsten Haferlach ◽  
Rudiger Hehlmann ◽  
...  

Abstract Fusion genes involving PDGFRA, PDGFRB, FGFR1 and JAK2 are seen in a substantial number of patients with BCR-ABL negative myeloproliferative disorders (MPD) and result in constitutive activation of the corresponding tyrosine kinase moiety. The vast majority of tyrosine kinase fusion partners contain coiled-coil domains or other dimerization motifs properties that are essential for malignant transformation. We have identified two patients presenting with eosinophilia-associated MPD and a t(5;12)(q31;q24) or a complex translocation t(1;5;11) with involvement of 5q31, respectively, suggesting a possible involvement of the PDGFRB gene which is located at chromosome band 5q31–33. 5′-rapid amplification of cDNA ends (5′-RACE) for the t(5;12) identified an in-frame mRNA fusion between ’G protein-coupled receptor kinase interactor 2′ (GIT2) exon 12 at 12q24 and PDGFRB exon 11. GIT2 is a member of the GIT protein family that is extensively alternative spliced in many distinct forms causing its functional diversity. A reciprocal transcript was amplified by RT-PCR with a fusion between PDGFRB exon 10 and GIT2 exon 13. GIT2-PDGFRB is predicted to be translated into a 742 amino acid fusion protein that retains the GIT2 N-terminal protein-protein interaction motif Ankyrin and an Arf GTPase activating protein (ArfGAP) domain fused to the transmembrane and catalytic domain of PDGFRB. The truncated GIT2 protein lacks coiled-coil domains as they are lost in the fusion protein due to the breakpoint within GIT2 intron 12. We therefore speculate that the Ankyrin repeat, which is one of the most common protein-protein interaction motifs in nature, may have replaced the function of a coiled-coil domain offering dimerization properties to the fusion protein. 5′-RACE for the complex t(1;5;11) identified an in-frame mRNA fusion between ’GPI-anchored membrane protein 1′ (GPIAP1) exon 7 at 11p13 and PDGFRB exon 11. Normal GPIAP1 is a cytoplasmic phosphoprotein which plays a mainly uncharacterized role in cellular activation or proliferation. The chimeric mRNA is predicted to encode an 803 amino acid fusion protein retaining the coiled-coil domain of GPIAP1 fused to the transmembrane and catalytic domains of PDGFRB. Both patients have been treated with 400 mg/day imatinib, which is a selective inhibitor of PDGFRB, and achieved rapid complete clinical and hematological remission. Residual GIT2-PDGFRB transcripts could be detected repeatedly during a 17 months follow up in case 1 whereas no follow-up samples have been available for case 2. These data give further evidence that numerous partner genes fuse to PDGFRB in BCR-ABL negative MPDs. In addition, the data demonstrate that cytogenetic analysis is a mandatory technique for the identification of tyrosine kinase fusion genes. In cases with abnormalities of chromosome 5q, a possible involvement of PDGFRB should be screened by adequate FISH and PCR-based techniques. Although their occurrence is rare in general, the identification of these fusion genes is essential for the successful treatment with tyrosine kinase inhibitors.


2001 ◽  
Vol 12 (10) ◽  
pp. 3152-3160 ◽  
Author(s):  
Collin Bachert ◽  
Tina H. Lee ◽  
Adam D. Linstedt

Despite the potential importance of retrieval-based targeting, few Golgi cisternae-localized proteins have been demonstrated to be targeted by retrieval, and the putative retrieval signals remain unknown. Golgi phosphoprotein of 130 kDa (GPP130) is acis-Golgi protein that allows assay of retrieval-based targeting because it redistributes to endosomes upon treatment with agents that disrupt lumenal pH, and it undergoes endosome-to-Golgi retrieval upon drug removal. Analysis of chimeric molecules containing domains from GPP130 and the plasma membrane protein dipeptidylpeptidase IV indicated that GPP130 targeting information is contained entirely within its lumenal domain. Dissection of the lumenal domain indicated that a predicted coiled-coil stem domain adjacent to the transmembrane domain was both required and sufficient for pH-sensitive Golgi localization and endosome-to-Golgi retrieval. Further dissection of this stem domain revealed two noncontiguous stretches that each conferred Golgi localization separated by a stretch that conferred endosomal targeting. Importantly, in the absence of the endosomal determinant the Golgi targeting of constructs containing either or both of the Golgi determinants became insensitive to pH disruption by monensin. Because monensin blocks endosome-to-Golgi transport, the finding that the endosomal determinant confers monensin sensitivity suggests that the endosomal determinant causes GPP130 to traffic to endosomes from which it is normally retrieved. Thus, our observations identify Golgi and endosomal targeting determinants within a lumenal predicted coiled-coil domain that appear to act coordinately to mediate retrieval-based targeting of GPP130.


2021 ◽  
Author(s):  
Meng Ke ◽  
Yue Yu ◽  
Changjian Zhao ◽  
Shirong Lai ◽  
Qiang Su ◽  
...  

TMEM120A (Transmembrane protein 120A) was recently identified as a mechanical pain sensing ion channel named as TACAN, while its homologue TMEM120B has no mechanosensing property1. Here, we report the cryo-EM structures of both human TMEM120A and TMEM120B. The two structures share the same dimeric assembly, mediated by extensive interactions through the transmembrane domain (TMD) and the N-terminal coiled coil domain (CCD). However, the nearly identical structures cannot provide clues for the difference in mechanosensing between TMEM120A and TMEM120B. Although TMEM120A could mediate conducting currents in a bilayer system, it does not mediate mechanical-induced currents in a heterologous expression system, suggesting TMEM120A is unlikely a mechanosensing channel. Instead, the TMDs of TMEM120A and TMEM120B resemble the structure of a fatty acid elongase, ELOVL7, indicating their potential role of an enzyme in lipid metabolism.


IUCrJ ◽  
2014 ◽  
Vol 1 (6) ◽  
pp. 505-513 ◽  
Author(s):  
Asma Rehman ◽  
Julia K. Archbold ◽  
Shu-Hong Hu ◽  
Suzanne J. Norwood ◽  
Brett M. Collins ◽  
...  

Membrane fusion is essential for human health, playing a vital role in processes as diverse as neurotransmission and blood glucose control. Two protein families are key: (1) the Sec1p/Munc18 (SM) and (2) the solubleN-ethylmaleimide-sensitive attachment protein receptor (SNARE) proteins. Whilst the essential nature of these proteins is irrefutable, their exact regulatory roles in membrane fusion remain controversial. In particular, whether SM proteins promote and/or inhibit the SNARE-complex formation required for membrane fusion is not resolved. Crystal structures of SM proteins alone and in complex with their cognate SNARE proteins have provided some insight, however, these structures lack the transmembrane spanning regions of the SNARE proteins and may not accurately reflect the native state. Here, we review the literature surrounding the regulatory role of mammalian Munc18 SM proteins required for exocytosis in eukaryotes. Our analysis suggests that the conflicting roles reported for these SM proteins may reflect differences in experimental design. SNARE proteins appear to require C-terminal immobilization or anchoring, for example through a transmembrane domain, to form a functional fusion complex in the presence of Munc18 proteins.


2008 ◽  
Vol 410 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Takehiro Aoki ◽  
Masaki Kojima ◽  
Katsuko Tani ◽  
Mitsuo Tagaya

SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) proteins involved in membrane fusion usually contain a conserved α-helix (SNARE motif) that is flanked by a C-terminal transmembrane domain. They can be classified into Q-SNARE and R-SNARE based on the structural property of their motifs. Assembly of four SNARE motifs (Qa, b, c and R) is supposed to trigger membrane fusion. We have previously shown that ER (endoplasmic reticulum)-localized syntaxin 18 (Qa) forms a complex with BNIP1 (Qb), p31/Use1 (Qc), Sec22b (R) and several peripheral membrane proteins. In the present study, we examined the interaction of syntaxin 18 with other SNAREs using pulldown assays and CD spectroscopy. We found that the association of syntaxin 18 with Sec22b induces an increase in α-helicity of their SNARE motifs, which results in the formation of high-affinity binding sites for BNIP1 and p31. This R-SNARE-dependent Q-SNARE assembly is quite different from the assembly mechanisms of SNAREs localized in organelles other than the ER. The implication of the mechanism of ER SNARE assembly is discussed in the context of the physiological roles of the syntaxin 18 complex.


2005 ◽  
Vol 4 (12) ◽  
pp. 2017-2028 ◽  
Author(s):  
Jeffrey S. Van Komen ◽  
Xiaoyang Bai ◽  
Travis L. Rodkey ◽  
Johanna Schaub ◽  
James A. McNew

ABSTRACT Exocytosis in Saccharomyces cerevisiae requires the specific interaction between the plasma membrane t-SNARE complex (Sso1/2p;Sec9p)and a vesicular v-SNARE (Snc1/2p). While SNARE proteins drive membrane fusion, many aspects of SNARE assembly and regulation are ill defined. Plasma membrane syntaxin homologs (including Sso1p) contain a highly charged juxtamembrane region between the transmembrane helix and the“ SNARE domain” or core complex domain. We examined this region in vitro and in vivo by targeted sequence modification, including insertions and replacements. These modified Sso1 proteins were expressed as the sole copy of Sso in S. cerevisiae and examined for viability. We found that mutant Sso1 proteins with insertions or duplications show limited function, whereas replacement of as few as three amino acids preceding the transmembrane domain resulted in a nonfunctional SNARE in vivo. Viability is also maintained when two proline residues are inserted in the juxtamembrane of Sso1p, suggesting that helical continuity between the transmembrane domain and the core coiled-coil domain is not absolutely required. Analysis of these mutations in vitro utilizing a reconstituted fusion assay illustrates that the mutant Sso1 proteins are only moderately impaired in fusion. These results suggest that the sequence of the juxtamembrane region of Sso1p is vital for function in vivo, independent of the ability of these proteins to direct membrane fusion.


2003 ◽  
Vol 77 (18) ◽  
pp. 9769-9779 ◽  
Author(s):  
Maya Shmulevitz ◽  
Jayme Salsman ◽  
Roy Duncan

ABSTRACT Avian reovirus and Nelson Bay reovirus are two unusual nonenveloped viruses that induce extensive cell-cell fusion via expression of a small nonstructural protein, termed p10. We investigated the importance of the transmembrane domain, a conserved membrane-proximal dicysteine motif, and an endodomain basic region in the membrane fusion activity of p10. We now show that the p10 dicysteine motif is palmitoylated and that loss of palmitoylation correlates with a loss of fusion activity. Mutational and functional analyses also revealed that a triglycine motif within the transmembrane domain and the membrane-proximal basic region were essential for p10-mediated membrane fusion. Mutations in any of these three motifs did not influence events upstream of syncytium formation, such as p10 membrane association, protein topology, or surface expression, suggesting that these motifs are more intimately associated with the membrane fusion reaction. These results suggest that the rudimentary p10 fusion protein has evolved a mechanism of inducing membrane merger that is highly dependent on the specific interaction of several different motifs with donor membranes. In addition, cross-linking, coimmunoprecipitation, and complementation assays provided no evidence for p10 homo- or heteromultimer formation, suggesting that p10 may be the first example of a membrane fusion protein that does not form stable, higher-order multimers.


2020 ◽  
Author(s):  
B. Bu ◽  
Z. Tian ◽  
D. Li ◽  
K. Zhang ◽  
B. Ji ◽  
...  

ABSTRACTMembrane fusion mediated by Soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) proteins is an important cellular process. For neuronal SNAREs, the single transmembrane domain has been proposed to pass zippering energy to membranes for inducing fast fusion. In contrast, the SNARE protein, syntaxin 17, for membrane fusion involved in autophagosome maturation contains an unusual V-shape double-transmembrane domain that may influence its capability to pass energy. Here, we showed that this double-transmembrane domain significantly reduces fusion with an in vitro reconstitution system. Through theoretic modelling, we found that this V-shape double-transmembrane domain increases lipid-protein mismatch, which reduces the energy transduction for fusion. Moreover, our model also revealed the involvement of 2-3 SNAREs in a general fusion process.SIGNIFICANT STATEMENTSoluble N-ethylmaleimide-sensitive factor activating protein receptors (SNAREs) serve as the molecular machine to mediate membrane fusion. The zipper formation of core structure extending to membranes by two single transmembrena domains (TMDs) is the main driving force of membrane fusion. The role of TMD in fusion is unclear. By adding an extra TMD, we found that the hydrophobic mismatch effect between the thickness of the membrane and the length of TMDs plays an important role in regulating fusion.


Sign in / Sign up

Export Citation Format

Share Document