scholarly journals A study on biology and larval behaviour of fruit piercing moth of Othreis (Eudocima) materna (L.) (Lepidoptera: Noctuidae) on pomegranate, Punica granatum

2021 ◽  
Vol 13 (1) ◽  
pp. 178-182
Author(s):  
Eknath Shendge ◽  
Bapurao Khaire ◽  
Ramrao Chavan

Among different fruit piercing moths, the genus Othreis are the most harmful, causing widespread damage to pomegranate, citrus and mango fruits causing fruit fall in tropical and subtropical countries. The present communication deals with the study on the biology of  Othreis materna (L) from egg to adult’s death which was carried out  at room temperature of the laboratory  to investigate the delicate and vulnerable stages of its life cycle. The life cycle of the moth was completed within 45-61 days, with an average 55.03 days in case of male and within 47-63 days with an average 57.07±4.92 in case of female. Eggs hatching started at night or early in the morning and duration of hatching was 2.72 days. The eggs measured were about 0.95 to 0.03 mm in diameter. The freshly emerged first instar larvae were light yellowish coloured and translucent. The first instar larvae were very active after hatching and they moved 4 to 6 feet for searching the food. The larvae were fed with the leaves of Tinospora cordifolia (Giloy or Guduchi). The total larval duration in days from first, second, third, fourth and fifth instar varied from 2.12±0.01, 1.81±0.05, 2.87±0.02, 3.90±0.11, 4.74±0.38 in days respectively and total larval period was 15.44±0.57. Pupae were dark brown in colour and total pupation period was of 13.81±0.12 days and total adult duration for male and female was 23.08±0.70 and 25.20±0.66 days respectively. The adult of O. materna was bright orange in colour and of medium size. The male was small than the female. This is first study of this type from Marathwada, which will help to trace the vulnerable and delicate stage of the life cycle of this O. materna.

1951 ◽  
Vol 42 (2) ◽  
pp. 355-370 ◽  
Author(s):  
J. Muspratt

Living specimens of Megarhinus brevipalpis were transported from southern Natal to Johannesburg to establish an insectary-bred colony. The natural habitat of these predatory mosquitos consisted of small isolated patches of sub-tropical forest, in which the rainfall is 40–50 ins. (102–127 cm.) with a mean winter temperature of 64°F. (17·7°C.) and an annual range of 27°–33°F. (15°–18°C). The breeding places were leaf axils of Strelitzia nicolai (a plant resembling a wild banana), small rot holes in trees and larger ones in Strelitzia stumps. The larvae were collected from leaf axils with an apparatus consisting of a rubber bulb to which were attached lengths of glass and rubber tubing.The insectary was a room 9 ft.×8 ft. 6 ins. and 9 ft. high which was kept at tropical heat and humidity. Mating of the adults was observed, copulation being effected while at rest or in flight. Oviposition was usually accomplished in flight but also while at rest on the surface of the water. In the summer time two females, which were tested, laid about 85 eggs each during the month following emergence from the pupa, six or seven days elapsing after emergence before the first oviposition. In the middle of the winter, oviposition (with later generations) became very irregular in spite of the temperature and humidity remaining constant. The adults, which were comparable to those of the natural habitat, were fed on sugar solution, honey and fruit juice. One bred out as a gynandromorph.When given an abundant supply of larvae of laboratory bred Aëdes aegypti, the life-cycle of M. brevipalpis was normally : egg (incubation), less than two days ; larva, 11–20 days (average 14·5 days) ; pupa, five days. This does not include a small number of exceptional cases in which the life as a fully grown larva was abnormally prolonged (in one case nearly four months) for reasons which are not absolutely clear. The larvae killed from 100 to 200 or more Aëdes larvae during the normal larval life, but many of these were not eaten when the brevipalpis were in the late fourth instar. By a special technique they were also induced to eat dead tissues including minced pork brawn, minced maggots and minced flies. Except for the latter these were not satisfactory foods although there was slow development.Fourth-instar larvae were kept out of water for three to four weeks (without food), in a damp atmosphere, and afterwards when fed most of them developed normally, but pupation was sometimes suspended for a considerable time. They have been sent by post (out of water) in tubes with damp cotton wool and filter paper.The egg differed from that of other Megarhinus species in having a crown of projections at one end with a cup-like structure in the centre. The exochorion had roughly hexagonal cells but without numerous tubercles as in other species.First-instar larvae remained in the egg-shell after hatching when the eggs-were out of water but on a damp surface and in a saturated atmosphere. They survived like this for up to six days or about the same time as the larvae survived in tap water if there was no food. When liberated in water the head of the first-instar larva was comparatively small with the mouth parts folded in. Within two hours of liberation in water the head enlarged considerably and the mouth parts came into position ; the larva was then ready to catch its Culicine prey. When in water containing dead leaves, these larvae survived from a few days to over four weeks and some grew to the third instar without any Culicine food.Cannibalism was investigated. Fourth-instar larvae did not attack each other readily ; they devoured smaller larvae of their own species and small to medium size larvae resorted to cannibalism, particularly in the absence of Culicine prey. There was evidence that fourth-instar Aëdes aegypti occasionally ate first-instar Megarhinus.The discussion traces attempts which have been made in certain Pacific islands, notably Hawaii and Fiji, to use Megarhines for biological control of disease-carrying mosquitos. M. brevipalpis has a shorter life-cycle than the species introduced into these islands and the conclusion reached is that laboratory breeding, to enable large numbers to be released in certain areas, would be a suitable adjunct to a programme of general control, in this part of the world. Airmail consignments of larvae are being sent to Hawaii with the object of starting a laboratory colony there.


2013 ◽  
Vol 30 (4) ◽  
pp. 371-378 ◽  
Author(s):  
Alexandre Specht ◽  
Andrés O. Angulo ◽  
Tania S. Olivares ◽  
Edegar Fronza ◽  
Vânia F. Roque-Specht ◽  
...  

2019 ◽  
Vol 11 (4) ◽  
pp. 126
Author(s):  
Lauren M. Barcelos ◽  
Fabrício O. Fernandes ◽  
Caroline Lopes ◽  
Beatriz M. Emygdio ◽  
Ricardo Valgas ◽  
...  

Saccharine sorghum has been analyzed as a supplementary prime matter for ethanol production, especially during the sugarcane off-season period. However, it has proven to be highly susceptible to insect attacks during the cultivation cycle. The fall armyworm should be emphasized due to its voracity and high damage capacity enhanced by feeding-caused decrease in photosynthetic area. Current analysis studies the biology and determines the nutritional indexes of Spodoptera frugiperda in saccharine sorghum. Cultivars of saccharine sorghum BRS 506, BRS 509 and BRS 511were evaluated. Duration and survival of the egg, caterpillar, pre-pupal and pupal phases were determined, coupled to weight of pupae and caterpillar, life span, fecundity and pre-egg laying period. Although S. frugiperda completed its life cycle on cultivars BRS 506 and BRS 511, egg-laying and egg feasibility rates were low, whereas insects did not lay eggs on cultivar BRS 509. There was no significant difference in feeding intake by S. frugiperda among these three sorghum cultivars. Results suggest that saccharine sorghum is not a suitable host for S. frugiperda. Biological data reveal that the three saccharine sorghum cultivars are recommended for the grain production system since the number of specimens of the next generation is low or null.


2005 ◽  
Vol 5 (1) ◽  
pp. 11-16
Author(s):  
Hamdani Hamdani

Activity of Melia azedarach (L.) seed extract against armyworm Spodoptera litura (F.) (Lepidoptera: Noctuidae). This study was conducted to evaluate the effectivenes and biological activity of Melia azedarach L. (Meliaceae) seed extract against armyworm, Spodoptera litura F. The first instar larvae were fed extract-treated cotton leaves for 2 days, then were maintained on untreated leaves until the third instar stage. Records were kept in regard to the larvae mortality and developmental time of surviving larvae from first instar to third instar. The result showed that Melia azedarach L. seed extract at consentration of 50 g of seeds/l of water (5%) exhibited moderate insecticidal activity against S. litura larvae (43.33 - 68.33% mortality). Addition of detergen at 0.2% to extract did not increase insecticidal activity of the extract. However, boiling seed extract at consentration of 50 g of seeds/l of water (5%) during 10 until 20 minutes increased insecticidal activity of extract (66.67 - 68.33% mortality). Generally, M. azedarach seed extract treatment did not affect  developmental time of  S. litura larvae.


2020 ◽  
Vol 17 (2) ◽  
pp. 104
Author(s):  
Dosma Ulina Simbolon ◽  
Maryani Cyccu Tobing ◽  
Darma Bakti

<p><em>Stenocranus pacificus </em>Kirkaldy (Hemiptera: Delphacidae) is destructive pest on corn plants in South Lampung and it has been reported to cause corn damages in North Sumatra. The  objective of this research was to study some aspects biology of <em>S. pacificus</em> on corn plants in screenhouse. The research was conducted by observing the biology of <em>S. pacificus</em> that was reared on corn plants in screenhouse.<em> </em>The results showed that life cycle of <em>S. pacificus </em>was 38–47 (41,60 ± 3,19) days: egg was 9–11 (10,20 ± 0,79) days, the first instar nymph was 3–4 (3,70 ± 0,48) days, the second instar nymph was 3–4 (3,90 ± 0,32) days, the third instar nymph was 3–4 (3,70 ± 0,48) days, the fourth instar nymph was 3–4 (3,80 ± 0,42) days, and the fifth instar nymph was 3–4 (3,60 ± 0,52) days. Age of female was 13–17 (15,30 ± 1,34) days. It was longer than age of male which was 8–12 (10,10 ± 1,20) days. Female could produce 181–214 (197,60 ± 11,64) eggs during its life. The sex ratio was 1:1,98.</p>


1953 ◽  
Vol 31 (4) ◽  
pp. 351-373 ◽  
Author(s):  
Liang-Yu Wu

A cause of swimmer's itch in the lower Ottawa River is Trichobilharzia cameroni sp. nov. Its life cycle has been completed experimentally in laboratory-bred snails and in canaries and ducks, and the various stages are described. The eggs are spindle-shaped. The sporocysts are colorless and tubular. Mother sporocysts become mature in about a week. The younger daughter sporocyst is provided with spines on the anterior end and becomes mature in about three weeks. The development in the snail requires from 28 to 35 days. A few cercariae were found to live for up to 14 days at 50 °C., although their life at 16° to 18 °C. was about four days. Cercariae kept at room temperature for 60 to 72 hr. were found infective. The adults become mature in canaries and pass eggs in about 12 to 14 days. Physa gyrina is the species of snail naturally infected. It was found in one case giving off cercariae for five months after being kept in the laboratory. Domestic ducks were found to become infected until they were at least four months old, with the parasites developing to maturity in due course; no experiments were made with older ducks. Furthermore, miracidia were still recovered from the faeces four months after the duck had been experimentally infected, and it is suggested that migratory birds are the source of the local infection.


2019 ◽  
Vol 2 (1) ◽  
pp. 338-346
Author(s):  
Saraswati Neupane ◽  
Subash Subedi

Maize stem borer (Chilo partellus swinhoe) is one of the major threatening global pests of maize and considered as the national top priority entomological research problem in Nepal. The Life cycle of maize stem borer was studied under laboratory condition at National Maize Research Program (NMRP), Rampur, Chitwan, Nepal during 2018. Development of stem borer undergoes following stages like egg, larvae, pupa and adult. Eggs and different instars of maize stem borer larvae were collected from maize fields were put with host materials (maize leaf and stem) to become different instars of larva, pupae and finally turned to adults. Eggs were harvested from adults and kept on blotting paper which was kept inside petriplates and reared for adults. Their life span in each stage (egg, larva and pupa) and the fecundity of adults recorded. Daily room temperature and relative humidity (RH) in laboratory conditions were recorded. The Egg incubation period ranged from 4-7 days and hatched generally in the early morning (6-8 AM). The complete larvae period ranged from 29 to 36 days while pupal period was ranged from 7 to 12 days. The average male pupal length was found 13 mm and female was 16 mm long. The fecundity of C. partellus Swinhoe was recorded 150-160 eggs per female. The Oviposition period was  4 days and adult male survived for 4-7 days while female for 4-9 days. The average life cycle of C. partellus completed in (44-48) days during summer whereas (60-64) days during winter at average room temperature of (26-27° C) and RH of (70-80%). These results have important implications to know the survival and development of pest including effective pest management strategy.


1993 ◽  
Vol 5 (2) ◽  
pp. 226-231 ◽  
Author(s):  
R. J. Panciera ◽  
S. A. Ewing ◽  
E. M. Johnson ◽  
B. J. Johnson ◽  
D. L. Whitenack

Migrating first-instar larvae of Hypoderma Zineatum are a frequent cause of focal inflammatory lesions in connective tissues of the mediastinum, parietal and visceral pleura, peritoneum, lungs, diaphragm, and other loci. The lesions are characterized grossly by foci of yellowish or greenish gelatinous edema and microscopically by infiltration of the edematous tissue by a dense array of eosinophils. Lesions were recognized during a period of several weeks in late spring; the timing was attributable to events in the life cycle of the fly. The larvae, which were small (≍ 1 × 4.5 mm), transparent, and unobtrusive, were recovered from lesions in 12 of 20 cattle in which careful parasitologic examination was made.


2015 ◽  
Vol 2 (5) ◽  
pp. 440-453 ◽  
Author(s):  
Weinan Leng ◽  
Paramjeet Pati ◽  
Peter J. Vikesland

In this study, we report the first room temperature seed-mediated synthesis of gold nanoparticles (AuNPs) in the presence of citrate and gold salt.


Sign in / Sign up

Export Citation Format

Share Document