scholarly journals Eosinophilic Mediastinitis, Myositis, Pleuritis, and Pneumonia of Cattle Associated with Migration of First-Instar Larvae of Hypoderma Zineatum

1993 ◽  
Vol 5 (2) ◽  
pp. 226-231 ◽  
Author(s):  
R. J. Panciera ◽  
S. A. Ewing ◽  
E. M. Johnson ◽  
B. J. Johnson ◽  
D. L. Whitenack

Migrating first-instar larvae of Hypoderma Zineatum are a frequent cause of focal inflammatory lesions in connective tissues of the mediastinum, parietal and visceral pleura, peritoneum, lungs, diaphragm, and other loci. The lesions are characterized grossly by foci of yellowish or greenish gelatinous edema and microscopically by infiltration of the edematous tissue by a dense array of eosinophils. Lesions were recognized during a period of several weeks in late spring; the timing was attributable to events in the life cycle of the fly. The larvae, which were small (≍ 1 × 4.5 mm), transparent, and unobtrusive, were recovered from lesions in 12 of 20 cattle in which careful parasitologic examination was made.

2021 ◽  
Vol 13 (1) ◽  
pp. 178-182
Author(s):  
Eknath Shendge ◽  
Bapurao Khaire ◽  
Ramrao Chavan

Among different fruit piercing moths, the genus Othreis are the most harmful, causing widespread damage to pomegranate, citrus and mango fruits causing fruit fall in tropical and subtropical countries. The present communication deals with the study on the biology of  Othreis materna (L) from egg to adult’s death which was carried out  at room temperature of the laboratory  to investigate the delicate and vulnerable stages of its life cycle. The life cycle of the moth was completed within 45-61 days, with an average 55.03 days in case of male and within 47-63 days with an average 57.07±4.92 in case of female. Eggs hatching started at night or early in the morning and duration of hatching was 2.72 days. The eggs measured were about 0.95 to 0.03 mm in diameter. The freshly emerged first instar larvae were light yellowish coloured and translucent. The first instar larvae were very active after hatching and they moved 4 to 6 feet for searching the food. The larvae were fed with the leaves of Tinospora cordifolia (Giloy or Guduchi). The total larval duration in days from first, second, third, fourth and fifth instar varied from 2.12±0.01, 1.81±0.05, 2.87±0.02, 3.90±0.11, 4.74±0.38 in days respectively and total larval period was 15.44±0.57. Pupae were dark brown in colour and total pupation period was of 13.81±0.12 days and total adult duration for male and female was 23.08±0.70 and 25.20±0.66 days respectively. The adult of O. materna was bright orange in colour and of medium size. The male was small than the female. This is first study of this type from Marathwada, which will help to trace the vulnerable and delicate stage of the life cycle of this O. materna.


2020 ◽  
Vol 17 (2) ◽  
pp. 104
Author(s):  
Dosma Ulina Simbolon ◽  
Maryani Cyccu Tobing ◽  
Darma Bakti

<p><em>Stenocranus pacificus </em>Kirkaldy (Hemiptera: Delphacidae) is destructive pest on corn plants in South Lampung and it has been reported to cause corn damages in North Sumatra. The  objective of this research was to study some aspects biology of <em>S. pacificus</em> on corn plants in screenhouse. The research was conducted by observing the biology of <em>S. pacificus</em> that was reared on corn plants in screenhouse.<em> </em>The results showed that life cycle of <em>S. pacificus </em>was 38–47 (41,60 ± 3,19) days: egg was 9–11 (10,20 ± 0,79) days, the first instar nymph was 3–4 (3,70 ± 0,48) days, the second instar nymph was 3–4 (3,90 ± 0,32) days, the third instar nymph was 3–4 (3,70 ± 0,48) days, the fourth instar nymph was 3–4 (3,80 ± 0,42) days, and the fifth instar nymph was 3–4 (3,60 ± 0,52) days. Age of female was 13–17 (15,30 ± 1,34) days. It was longer than age of male which was 8–12 (10,10 ± 1,20) days. Female could produce 181–214 (197,60 ± 11,64) eggs during its life. The sex ratio was 1:1,98.</p>


1951 ◽  
Vol 42 (2) ◽  
pp. 355-370 ◽  
Author(s):  
J. Muspratt

Living specimens of Megarhinus brevipalpis were transported from southern Natal to Johannesburg to establish an insectary-bred colony. The natural habitat of these predatory mosquitos consisted of small isolated patches of sub-tropical forest, in which the rainfall is 40–50 ins. (102–127 cm.) with a mean winter temperature of 64°F. (17·7°C.) and an annual range of 27°–33°F. (15°–18°C). The breeding places were leaf axils of Strelitzia nicolai (a plant resembling a wild banana), small rot holes in trees and larger ones in Strelitzia stumps. The larvae were collected from leaf axils with an apparatus consisting of a rubber bulb to which were attached lengths of glass and rubber tubing.The insectary was a room 9 ft.×8 ft. 6 ins. and 9 ft. high which was kept at tropical heat and humidity. Mating of the adults was observed, copulation being effected while at rest or in flight. Oviposition was usually accomplished in flight but also while at rest on the surface of the water. In the summer time two females, which were tested, laid about 85 eggs each during the month following emergence from the pupa, six or seven days elapsing after emergence before the first oviposition. In the middle of the winter, oviposition (with later generations) became very irregular in spite of the temperature and humidity remaining constant. The adults, which were comparable to those of the natural habitat, were fed on sugar solution, honey and fruit juice. One bred out as a gynandromorph.When given an abundant supply of larvae of laboratory bred Aëdes aegypti, the life-cycle of M. brevipalpis was normally : egg (incubation), less than two days ; larva, 11–20 days (average 14·5 days) ; pupa, five days. This does not include a small number of exceptional cases in which the life as a fully grown larva was abnormally prolonged (in one case nearly four months) for reasons which are not absolutely clear. The larvae killed from 100 to 200 or more Aëdes larvae during the normal larval life, but many of these were not eaten when the brevipalpis were in the late fourth instar. By a special technique they were also induced to eat dead tissues including minced pork brawn, minced maggots and minced flies. Except for the latter these were not satisfactory foods although there was slow development.Fourth-instar larvae were kept out of water for three to four weeks (without food), in a damp atmosphere, and afterwards when fed most of them developed normally, but pupation was sometimes suspended for a considerable time. They have been sent by post (out of water) in tubes with damp cotton wool and filter paper.The egg differed from that of other Megarhinus species in having a crown of projections at one end with a cup-like structure in the centre. The exochorion had roughly hexagonal cells but without numerous tubercles as in other species.First-instar larvae remained in the egg-shell after hatching when the eggs-were out of water but on a damp surface and in a saturated atmosphere. They survived like this for up to six days or about the same time as the larvae survived in tap water if there was no food. When liberated in water the head of the first-instar larva was comparatively small with the mouth parts folded in. Within two hours of liberation in water the head enlarged considerably and the mouth parts came into position ; the larva was then ready to catch its Culicine prey. When in water containing dead leaves, these larvae survived from a few days to over four weeks and some grew to the third instar without any Culicine food.Cannibalism was investigated. Fourth-instar larvae did not attack each other readily ; they devoured smaller larvae of their own species and small to medium size larvae resorted to cannibalism, particularly in the absence of Culicine prey. There was evidence that fourth-instar Aëdes aegypti occasionally ate first-instar Megarhinus.The discussion traces attempts which have been made in certain Pacific islands, notably Hawaii and Fiji, to use Megarhines for biological control of disease-carrying mosquitos. M. brevipalpis has a shorter life-cycle than the species introduced into these islands and the conclusion reached is that laboratory breeding, to enable large numbers to be released in certain areas, would be a suitable adjunct to a programme of general control, in this part of the world. Airmail consignments of larvae are being sent to Hawaii with the object of starting a laboratory colony there.


1998 ◽  
Vol 130 (4) ◽  
pp. 387-397 ◽  
Author(s):  
David W. Langor ◽  
Daryl J.M. Williams

AbstractThe seasonal life history and mortality of the lodgepole terminal weevil, Pissodes terminalis Hopping (Coleoptera: Curculionidae), were investigated in young lodgepole pine, Pinus contorta Douglas var. latifolia Engelmann (Pinaceae), at three sites in west-central Alberta. Flight was monitored with traps. Development and mortality of all stages were investigated by dissecting infested leaders biweekly from late spring to early fall. Two years were required for P. terminalis to complete its life cycle, and generations overlapped. Overwintered adults emerged from the duff and commenced flight in late May, with a peak in mid-June. Eggs were present from mid-June to late July. There were four larval instars. The first two instars fed only in the phloem. Third and fourth larval instars eventually entered the pith to continue feeding, overwinter, and complete development the following spring. The new generation of adults emerged between mid-July and early August, fed on new shoots for several weeks, and overwintered in the duff. Adults have an obligatory diapause and did not reproduce until after winter. Fourth larval instars suffered the highest mortality. The major attributable cause of mortality was resinosis among eggs and young larvae and cold temperatures during the winter among mature larvae. Pathogens caused little mortality. Six species of parasitoids were collected.


2003 ◽  
Vol 15 (4) ◽  
pp. 361-364 ◽  
Author(s):  
C. R. Gustafson ◽  
G. L. Cooper ◽  
B. R. Charlton ◽  
A. A. Bickford ◽  
R. Nordhausen

A disease characterized by paresis and paralysis was seen in 7–9-day-old broiler chicks after vaccination in the neck area at day-of-age with a live virus vaccine containing viruses of Marek's disease, fowl pox, and infectious bursal disease. Affected birds presented with variable signs of ataxia, lateral recumbency, leg paralysis, and twisting or S-shaped flexure of the neck. Gross lesions noted at necropsy included swelling and edema of the subcutaneous tissues and muscles of the neck at the injection site area. A heavy mononuclear inflammatory cell infiltration was seen in the subcutaneous tissues, connective tissues, and muscles of the neck at the injection site. In some cases, the inflammatory process extended along fascial planes to involve the epidural spaces surrounding the spinal cord. Fatty changes with possible demyelination of nerve fibers were noted in some sections of the spinal cord adjacent to the inflammatory lesions. Clusters of poxviruses were found within some inflammatory lesions on transmission electron photomicrographs.


1991 ◽  
Vol 65 (1) ◽  
pp. 43-50 ◽  
Author(s):  
K. P. Janardanan ◽  
P. K. Prasadan

ABSTRACTThe life-cycle of Pleurogenoides ovatus Rao, 1977, infecting the frogs, Rana tigrina and R. cyanophlyctis has been elucidated. All the life-cycle stages from egg to egg-producing adults were successfully established in the laboratory. The life-cycle took about 80 days for completion. Cercariae were found in the freshwater snail, Digoniostoma pulchella, collected from paddy fields at Chelembra, Malappuram district of Kerala, during the monsoon months. Cercariae are of the virgulate xiphidiocercous type. Metacercariae occurred in the connective tissues, hepatopancreas and musculature of the freshwater crab, Paratelphusa hydrodromous. The growth and development of the metacercariae in P. hydrodromous have been studied in detail. Frogs became infected when they fed on infected crabs. The prepatent period is 10 days.


2000 ◽  
Vol 60 (1) ◽  
pp. 173-178 ◽  
Author(s):  
B.-H. C. CALDAS ◽  
L. R. REDAELLI ◽  
L. M. G. DIEFENBACH

Corecoris dentiventris Berg, 1884 (HEM., Coreidae) represents a pest in the tobacco culture in Southern Brazil. Nymphs and adults cause the wilting and twisting of the tobacco leaves due to their sucking habit. There are very few works about this species and these are restricted to concise description of the adult morphology, records of host plants and enumeration of injuries. The present investigation aims to study the life cycle of this bug. The experiment was carried out in a tobacco culture (Virginia type, var. K 326) implanted in the experimental area of the Departamento de Fitossanidade of the Universidade Federal do Rio Grande do Sul, in Porto Alegre, RS. The life cycle was studied in field conditions, in nylon cages, from egg clusters oviposited by females of the colonizing generation. The prefered oviposition site was the main vein in the abaxial side of the leaf. The average incubation period was 13.7 ± 0.04 days and the egg viability, 99.63%. The average periods of the different instars of the bug, in days, were: 5.4 ± 0.08, 9.7 ± 0.19, 4.5 ± 0.08, 5.3 ± 0.08, 9.0 ± 0.13 respectively for the first, second, third, fourth and fifth instars. The first instar presented the highest mortality (13.86%). The accumulated mortality of the nymphal phase was 35.29%. The sex ratio was 0.97 males : 1 female.


2020 ◽  
Vol 15 (2) ◽  
pp. 26-39
Author(s):  
PAUL KAY ◽  
PAUL M HUTCHINSON ◽  
JOHN A GREHAN

This study successfully documents, for the first time, the entire life cycle of Aenetus djernaesae Simonsen, 2018 and confirms the efficacy of using supplemental sources of fungi to feed the early instar larvae. Fresh cut pieces of the commercial mushroom Agaricus bisporus (J.E. Lange) and sections of Eucalyptus L’Her. bark were placed around the base of potted host plants –Myoporum insulare R.Br. (Scrophulariaceae) and the potential host plant Dodonea hackettiana W.Fitz. (Sapindaceae). First instar larvae were added to this matrix where they fed on the mushroom and bark. The life cycle comprised egg development of 20 days, fungal feeding of ~36 days, and host plant development (including pupal) of ~300 days. Adult emergence of reared and field collected samples occurred within a 22 day period. Larvae transferring from fungi to host plants transitioned during the night by constructing a web of silk and plant tissues within two hours and proceeding to excavate a tunnel from within. The mature larval tunnel is relatively short, up to 220 mm in length and usually extending below the entrance around which the larvae grazes on callus tissue forming after bark removal. Most adults emerged within an hour of dusk with the pupa protruding from the top of the vestibule. The rearing method described here demonstrates the feasibility of laboratory based studies of larval development in Aenetus Herrrich-Schäffer and other callus-feeding stem boring Hepialidae.  Key words: Hepialidae, Aenetus, life cycle, artificial diet, Myoporum, Dodonea, larval foodplant


2010 ◽  
Vol 19 (3) ◽  
pp. 164-168 ◽  
Author(s):  
Huarrisson Azevedo Santos ◽  
Isabele da Costa Angelo ◽  
Marcos Pinheiro Franque ◽  
Usha Vashist ◽  
Aline Falqueto Duarte ◽  
...  

The current study investigated the biology of nymphs of the first and second instars of Argas (Persicargas) miniatus. Nymphs were deprived of food for 15, 30 or 60 days and held at 27 ± 1 ºC and 80 ± 10% relative humidity (controlled conditions) or at room conditions of temperature and relative humidity. Nymphs of first instar deprived of food for 15 or 30 days molted to second and third instars in both controlled and room conditions. Nymphs of the first instar deprived of food for 60 days had 28 and 37% mortality in controlled and room conditions, respectively; and survivors did not attach to the host. Nymphs of the second instar, deprived of food for 60 days, molted either to the third instar or to males after feeding on Gallus gallus, and the nymphs of the third instar developed to adults (42.42% males and 36.36% females when nymphs were held in controlled temperature and humidity conditions, and 40.54% males and 48.65% females when nymphs were held in room conditions). The remainder of the nymphs molted to the fourth instar and then molted to females. In conclusion, the nymphal starvation period of 60 days determined the number of nymph instars in the life cycle of A. miniatus under the experimental conditions studied.


1927 ◽  
Vol 18 (2) ◽  
pp. 179-181 ◽  
Author(s):  
A. M. Massee

During recent years a great deal of research work has been carried out in connection with the control of the black currant gall mite Eriophyes ribis (Westw.) Nal. This work has necessarily included the very careful study of the mites themselves, in order that the life-cycle might be fully understood, with the final object of trying to exterminate the mites at a period when they offered least resistance and were not living within the buds, which afford them adequate protection.While examining some black currant bushes in the late spring and summer months of 1923, in order to locate the position and determine the habits of the mites during that season, a rather peculiar form of mite was noticed to be present in small numbers. This new mite, when examined in the field, appeared to be very much stouter and of a darker colour than the familiar black currant gall mite. However, for some time it was regarded as being an immature stage of the common species. After some months this mite turned up again in greater numbers, and it was decided to examine it in detail in the Laboratory. The species proved to be a new one belonging to the genus Phyllocoptes.


Sign in / Sign up

Export Citation Format

Share Document