scholarly journals Multifactorial control of gonadotropin release for induction of oocyte maturation: Influence of gonadotropin-releasing hormone, gonadotropin release-inhibiting factor and dopamine receptors in the catfish, Heteropneustes fossilis

2021 ◽  
Vol 13 (2) ◽  
pp. 686-699
Author(s):  
Pooja Kumari ◽  
Neeta Sehgal ◽  
S. V. Goswami ◽  
Neerja Aggarwal

Several external and internal factors contribute to the reproductive success of teleosts, which makes the reproductive process complex and unique. In the Indian freshwater catfish, Heteropneustes fossilis, monsoon plays a crucial role as it fine tunes the neuroendocrine axis, culminating in oocyte maturation. Therefore, induction of oocyte maturation requires the coordinated interaction among hypothalamic, hypophyseal, and peripheral hormones.  In the present investigation, dual neuroendocrine control of oocyte maturation has been demonstrated in the catfish, H. fossilis. The maturational response in gravid catfish is inhibited in the presence of dopamine but GnRH evokes the oocyte maturation and ovulation. GnRH upregulates the expression of lhb gene as well as increases plasma levels of LH significantly within 30 minutes of its administration. Destruction of the preoptic region in gravid catfish by electrolytic or chemical lesions also causes oocyte maturation and ovulation. But this response is inhibited if dopamine is injected into the nucleus preopticus periventricularis-lesioned fishes. These observations support the role of dopamine as an inhibitory factor, therefore specific receptors of dopamine have been characterized in catfish and their expression in the brain has been quantified. Dopamine receptors are upregulated in dopamine-treated fishes and downregulated if a dopamine antagonist (pimozide) is injected. The present study suggests the presence of inhibitory mechanism for LH secretion in gravid catfish. Abolition of this inhibition is necessary to release LH surge, which in turn stimulates resumption of meiosis and ovulation. Thus peptidergic as well as aminergic systems regulate oocyte maturation in H. fossilis. Neuroendocrine regulation of oocyte maturation and ovulation has major implications for inducing spawning in aquaculture.

1982 ◽  
Vol 94 (3) ◽  
pp. 347-NP ◽  
Author(s):  
M. J. Cronin ◽  
D. A. Keefer ◽  
C. A. Valdenegro ◽  
L. G. Dabney ◽  
R. M. MacLeod

The MtTW15 transplantable pituitary tumour grown in rats was tested in vitro for the ability of dopamine agonists to affect prolactin secretion and for the existence of dopamine receptors. Prolactin release from enzymatically dispersed cells and non-enzymatically treated tissue fragments of both the tumour and the anterior pituitary gland was determined in a cell perifusion column apparatus. Dopamine (0·1–5 μmol/l), bromocriptine (50 nmol/l) and the dopamine antagonist haloperidol (100 nmol/l) had no effect on prolactin release from the tumour cells. In contrast, dopamine (500 nmol/l) inhibited prolactin secretion from normal anterior pituitary cells in a parallel cell column and haloperidol blocked this inhibition. Although oestrogen treatment in vivo stimulated prolactin release in vitro when the tumour was removed and studied in the cell column, oestrogen had no effect on the inability of dopamine to modify the prolactin secretion. Growth hormone release from the tumour cells was not affected by dopamine. Although MtTW15 cells were refractory to dopaminergic inhibition of prolactin release, the dopamine receptors present in tumour homogenates were indistinguishable from the dopamine receptors previously defined in the normal anterior pituitary gland. The binding of the dopamine antagonist [3H]spiperone to the tumour was saturable (110 fmol/mg protein), of high affinity to one apparent class of sites (dissociation constant = 0·12 nmol/l), reversible and sensitive to guanine nucleotides. The pharmacology of the binding was defined in competition studies with a large number of agonists and antagonists. From the order of potency of these agents, a dopaminergic interaction was apparent. We conclude that the prolactin-secreting MtTW15 tumour cells appear to be completely unresponsive to dopamine or to the potent dopamine agonist bromocriptine, in spite of apparently normal dopamine receptors in the tumour.


2009 ◽  
Vol 54 (No. 3) ◽  
pp. 97-110 ◽  
Author(s):  
P. Podhorec ◽  
J. Kouril

Gonadotropin-releasing hormone in Cyprinidae as in other Vertebrates functions as a brain signal which stimulates the secretion of luteinizing hormone from the pituitary gland. Two forms of gonadotropin-releasing hormone have been identified in cyprinids, chicken gonadotropin-releasing hormone II and salmon gonadotropin-releasing hormone. Hypohysiotropic functions are fulfilled mainly by salmon gonadotropin-releasing hormone. The only known factor having an inhibitory effect on LH secretion in the family Cyprinidae is dopamine. Most cyprinids reared under controlled conditions exhibit signs of reproductive dysfunction, which is manifested in the failure to undergo final oocyte maturation and ovulation. In captivity a disruption of endogenous gonadotropin-releasing hormone stimulation occurs and sequentially that of luteinizing hormone, which is indispensible for the final phases of gametogenesis. In addition to methods based on the application of exogenous gonadotropins, the usage of a method functioning on the basis of hypothalamic control of final oocyte maturation and ovulation has become popular recently. The replacement of natural gonadotropin-releasing hormones with chemically synthesized gonadotropin-releasing hormone analogues characterized by amino acid substitutions at positions sensitive to enzymatic degradation has resulted in a centuple increase in the effectiveness of luteinizing hormone secretion induction. Combining gonadotropin-releasing hormone analogues with Dopamine inhibitory factors have made it possible to develop an extremely effective agent, which is necessary for the successful artificial reproduction of cyprinids.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Simon A. Sharples ◽  
Nicole E. Burma ◽  
Joanna Borowska-Fielding ◽  
Charlie H. T. Kwok ◽  
Shane E. A. Eaton ◽  
...  

Abstract Dopamine is well known to regulate movement through the differential control of direct and indirect pathways in the striatum that express D1 and D2 receptors respectively. The spinal cord also expresses all dopamine receptors; however, how the specific receptors regulate spinal network output in mammals is poorly understood. We explore the receptor-specific mechanisms that underlie dopaminergic control of spinal network output of neonatal mice during changes in spinal network excitability. During spontaneous activity, which is a characteristic of developing spinal networks operating in a low excitability state, we found that dopamine is primarily inhibitory. We uncover an excitatory D1-mediated effect of dopamine on motoneurons and network output that also involves co-activation with D2 receptors. Critically, these excitatory actions require higher concentrations of dopamine; however, analysis of dopamine concentrations of neonates indicates that endogenous levels of spinal dopamine are low. Because endogenous levels of spinal dopamine are low, this excitatory dopaminergic pathway is likely physiologically-silent at this stage in development. In contrast, the inhibitory effect of dopamine, at low physiological concentrations is mediated by parallel activation of D2, D3, D4 and α2 receptors which is reproduced when endogenous dopamine levels are increased by blocking dopamine reuptake and metabolism. We provide evidence in support of dedicated spinal network components that are controlled by excitatory D1 and inhibitory D2 receptors that is reminiscent of the classic dopaminergic indirect and direct pathway within the striatum. These results indicate that network state is an important factor that dictates receptor-specific and therefore dose-dependent control of neuromodulators on spinal network output and advances our understanding of how neuromodulators regulate neural networks under dynamically changing excitability.


Reproduction ◽  
2014 ◽  
Vol 147 (1) ◽  
pp. 53-64 ◽  
Author(s):  
Chubin Qin ◽  
Li Xu ◽  
Yalin Yang ◽  
Suxu He ◽  
Yingying Dai ◽  
...  

To increase the knowledge of probiotic effects on zebrafish (Danio rerio), we compare the effects of two probiotic strains, Lactobacillus rhamnosus CICC 6141 (a highly adhesive strain) and Lactobacillus casei BL23 (a weakly adhesive strain), on zebrafish reproduction and their offsprings' innate level of immunity to water-borne pathogens. During probiotics treatments from 7 to 28 days, both the Lactobacillus strains, and especially L. casei BL23, significantly increased fecundity in zebrafish: higher rates of egg ovulation, fertilization, and hatching were observed. Increased densities of both small and large vitellogenic follicles, seen in specimens fed either Lactobacillus strain, demonstrated accelerated oocyte maturation. Feeding either strain of Lactobacillus upregulated gene expression of leptin, kiss2, gnrh3, fsh, lh, lhcgr, and paqr8, which were regarded to enhance fecundity and encourage oocyte maturation. Concomitantly, the gene expression of bmp15 and tgfb1 was inhibited, which code for local factors that prevent oocyte maturation. The beneficial effects of the Lactobacillus strains on fecundity diminished after feeding of the probiotics was discontinued, even for the highly adhesive gut Lactobacillus strain. Administering L. rhamnosus CICC 6141 for 28 days was found to affect the innate immunity of offspring derived from their parents, as evinced by a lower level of alkaline phosphatase activity in early larval stages. This study highlights the effects of probiotics both upon the reproductive process and upon the offsprings' immunity during early developmental stages.


2006 ◽  
Vol 189 (2) ◽  
pp. 341-353 ◽  
Author(s):  
A Mishra ◽  
K P Joy

An HPLC method was used to tentatively identify progesterone (P4) and its metabolites (17-hydroxyprogesterone (17-P4) and 17,20β-dihydroxy-4-pregnen-3-one (17,20β-P)), corticosteroids (cortisol and corticosterone) and testosterone in ovary/follicular preparations of the catfish Heteropneustes fossilis associated with in vivo or in vitro oocyte maturation/ovulation. A single i.p. injection of human chorionic gonadotrophin (100 IU/fish, sampled at 0, 8 and 16 h) induced oocyte maturation and ovulation, which coincided with significant and progressive increases in 17,20β-P, and P4 and 17-P4, the precursors of the former. Both cortisol and corticosterone also increased significantly. Conversely, testosterone decreased significantly and progressively over time. Under in vitro conditions, incubation of post-vitellogenic (intact) follicles or follicular envelope (layer) with 2-hydroxyoestradiol (2-OHE2, 5 μM for 0, 6 and 24 h) elicited a sharp significant increase in 17,20β-P, the increase being higher in the follicular envelope incubate. P4 and 17-P4 also registered significant increases over the time with the peak values at 24 h. Cortisol and corticosterone increased significantly in the intact follicle, but not in the follicular envelope incubate. Testosterone decreased significantly in the intact follicle, but increased significantly (24 h) in the follicular envelope incubate. Coincident with these changes, the percentage of germinal vesicle breakdown (GVBD) increased over the time in the intact follicle incubate (48.9% at 6 h and 79.8% at 24 h). Denuded oocytes on incubation with 2-OHE2 (5 μM) did not produce any significant change in the percentage of GVBD or in the steroid profile. While corticosterone and 17,20β-P were undetected, P4, 17-P4, cortisol and testosterone were detected in low amounts. The results show that the 2-OHE2-induced GVBD response seems to be mediated through the production of 17,20β-P and corticosteroids. It is suggested that hydroxyoestrogens seem to be a component in the gonadotrophin cascade of regulation of oocyte maturation/ovulation in the catfish.


Sign in / Sign up

Export Citation Format

Share Document