scholarly journals Response of rice (Oryza sativa L.) productivity and nutrient uptake to nitrogen and boron fertilization in Typic Ustifluvents soil

2021 ◽  
Vol 13 (4) ◽  
pp. 1372-1377
Author(s):  
Abinaya M. ◽  
R. Manivannan ◽  
M.V. Sriramachandrasekharan ◽  
P. Senthilvalavan ◽  
S. Kalaisudarson ◽  
...  

Nitrogen and boron are necessary for the metabolic activities of rice for its growth. With this perspective, a field experiment was conducted in farmer’s field during 2020 at Kuttalam, Mayladuthurai district, Tamilnadu in sandy clay loam(Padugai Series – TypicUstifluvents) to predict the response of rice (Oryza sativa) to different levels of nitrogen(N) and boron (B) application. The treatments consisted of Factor A- Nitrogen levels, 0, 75, 150, 225 kg ha-1 and Factor B- Boron levels 0, 1.5, 3.0 kg ha-1. Fifteen treatments were conducted in a Factorial randomised block (FRBD) design with three replications.  The test crop was rice with a variety ADT 46.    Concerning nitrogen alone, the highest grain (5344 kg ha-1) and straw yield was recorded in N3(225 kg ha-1). Among the boron levels tested, the highest grain (4695 kg ha-1) and straw yield (6509 kg ha-1) was registered in B1 (1.5 kg ha-1) in rice. The highest total nutrient uptake viz., N(88.2 kg ha-1), P(30.5 kg ha-1), K(105.0 kg ha-1) and B(172mg kg-1)  were recorded in N3B1. Among the N alone, the highest total nutrient uptake viz., N(78.1kg ha-1, P(26.3kg ha-1), K (95.8 kg ha-1) and B(156.6 mg kg-1) in N3. Concerning B alone, the highest nutrient uptake viz., N(60.5, kg ha-1) , P(17.8kg ha-1) K(74.9 kg ha-1) and B(112.1mg kg-1) were registered in B1 over other B levels. The highest grain (5631 kg ha-1) was recorded in N3B1 (225 kg N ha-1 and 1.5kg B ha-1) than other interactions. The study concluded that applying nitrogen and boron is required to achieve the maximum yield of rice in sandy clay loam soil.

2021 ◽  
Vol 13 (1) ◽  
pp. 352-356
Author(s):  
Manivannan R. ◽  
M.V. Sriramachandrasekharan ◽  
P. Senthilvalavan ◽  
C. Ravikumar

Nitrogen through organics and inorganics application is an alternate to maintain soil health and crop productivity in the rice cropping system. With this background, field experiments were conducted in farmer’s field at Kuttalam during 2012-2013, 2013-14 to evaluate residual organics and mineral nitrogen (100%N) on growth parameters and yield of rice (Oryza sativa) in sandy clay loam and clay loam soil. The treatments consisted of residual organics viz., composted coir pith (CCP), green manures (GM), sugarcane trash compost (STC), vermicompost (VC), poultry manure (PM) and FYM applied(100%N) and a combination of above residual organics with urea@50%N besides 100% recommended dose of nitrogen (RDN) and control. The results revealed that residual organics and urea recorded higher growth parameters like plant height, chlorophyll content, leaf area index(LAI), crop growth rate (CGR), relative growth rate(RGR), net assimilation rate(NAR), No. of tillers/hill compared to their individual addition. The growth parameters were more under residual PM in combination with mineral nitrogen in both the soils. Residual PM + fertilizer nitrogen (100% N) recorded highest grain (4485, 4693 kg ha-1) and straw yield (6984, 5897 kg ha-1) in clay loam and sandy clay loam soils, respectively. The lowest grain(3292, 2993 kg ha-1) and straw yield(4998, 4003 kg ha-1) were recorded in residual GM + fertilizer (100% N) in both soils. Among organics alone, residual PM(100% N) registered highest grain yield (4025, 4048 kg ha-1) in both soils. It can be concluded that the application of poultry manure alone or in combination with N fertilizers enhanced the growth and improved soil health. 


2021 ◽  
Vol 17 (AAEBSSD) ◽  
pp. 257-261
Author(s):  
Vishnu ◽  
Vishal Verma ◽  
Gabu Singh Gathiye

The field experiment was carried out at AICRP IFS Research Farm, Krishi Nagar, Jawaharlal Nehru Krishi Vishwa Vidyalaya, and Jabalpur (MP), India during Kharif season of 2016. The study was carried out to evaluate the suitable organic and inorganic nutrient for rice crop. The results revealed that grain yield, straw yield and nutrient uptake viz., nitrogen, phosphorus and potassium uptake by grain and straw of rice were higher with application of 100% NPK through fertilizers and 50% N through Vermicompost + 50% NPK through fertilizers, as compared to 100% N through Vermicompost, 75% N through Vermicompost, farmers practice N: 60, P: 30 through fertilizers + 3 tonnes FYM/ha, 75% N through Vermicompost + 25% NPK through fertilizers and absolute control.


2020 ◽  
Vol 8 (6) ◽  
pp. 1038-1041
Author(s):  
C Bharathi ◽  
P Murali Arthanari ◽  
C Chinnusamy

Soil Research ◽  
2019 ◽  
Vol 57 (8) ◽  
pp. 814 ◽  
Author(s):  
Arkadiusz Telesiński ◽  
Teresa Krzyśko-Łupicka ◽  
Krystyna Cybulska ◽  
Barbara Pawłowska ◽  
Robert Biczak ◽  
...  

This study used laboratory experiments to compare the effects of coal tar creosote on the activity of oxidoreductive enzymes in sandy loam, loamy sand and sandy clay loam soils. Different amounts of coal tar creosote were added to soil samples as follows: 0 (control), 2, 10 or 50 g kg–1 dry matter. The activity of soil dehydrogenases (DHAs), o-diphenol oxidase (o-DPO), catalase (CAT), nitrate reductase (NR) and peroxidases (POX) was determined. Contamination of soil with coal tar creosote affected oxidoreductase activity. Oxidoreductive enzyme activity following soil contamination with coal tar creosote was in the following order: DHAs > CAT > NR > POX > o-DPO in loamy sand and in sandy loam; and DHAs > POX > CAT > NR > o-DPO in sandy clay loam. The index of soil oxidoreductive activity (IOx) introduced in this study confirms the negative effect of coal tar creosote on oxidoreductase activity in soil. DHAs were the most sensitive to the contamination of soil with coal tar creosote. Moreover, the greatest changes in oxidoreductase activities were observed in loamy sand. Knowledge of the mechanism underlying the effects of coal tar creosote on oxidoreductive processes may enable development of a method for the bioremediation of polycyclic aromatic hydrocarbon-contaminated soils.


2021 ◽  
Vol 14 (4) ◽  
Author(s):  
Haroon Shahzad ◽  
Muhammad Iqbal ◽  
Noman Latif ◽  
Muhammad Arshad Khan ◽  
Qudrat Ullah Khan

Sign in / Sign up

Export Citation Format

Share Document